Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 074201    DOI: 10.1088/1674-1056/27/7/074201

Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy

Ning Ru(茹宁)1,2, Yu Wang(王宇)2, Hui-Juan Ma(马慧娟)2, Dong Hu(胡栋)2, Li Zhang(张力)2, Shang-Chun Fan(樊尚春)1
1 School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China;
2 Key Laboratory for Metrology, Changcheng Institute of Metrology and Measurement, Beijing 100095, China
Abstract  We introduce a new method of simultaneously implementing frequency stabilization and frequency shift for semiconductor lasers. We name this method the frequency tunable modulation transfer spectroscopy (FTMTS). To realize a stable output of 780 nm semiconductor laser, an FTMTS optical heterodyne frequency stabilization system is constructed. Before entering into the frequency stabilization system, the probe laser passes through an acousto-optical modulator (AOM) twice in advance to achieve tunable frequency while keeping the light path stable. According to the experimental results, the frequency changes from 120 MHz to 190 MHz after the double-pass AOM, and the intensity of laser entering into the system is greatly changed, but there is almost no change in the error signal of the FTMTS spectrum. Using this signal to lock the laser frequency, we can ensure that the frequency of the laser changes with the amount of AOM shift. Therefore, the magneto-optical trap (MOT)-molasses process can be implemented smoothly.
Keywords:  semiconductor laser      frequency stabilization      frequency shift      frequency tunable modulation transfer spectroscopy  
Received:  19 April 2018      Revised:  13 May 2018      Published:  05 July 2018
PACS:  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  33.57.+c (Magneto-optical and electro-optical spectra and effects)  
Fund: Project supported by the National Key Scientific Instrument and Equipment Development Project, China (Grant No. 2014YQ35046103).
Corresponding Authors:  Ning Ru     E-mail:

Cite this article: 

Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春) Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy 2018 Chin. Phys. B 27 074201

[1] Chu S 1998 Rev. Mod. Phys. 70 685
[2] Tian S C, Wang C L and Kang Z H 2012 Chin. Phys. B 21 064206
[3] Akulshin A M, Sautenkov V A, Velichasky V L, Zibov A S and Zverkov M V 1990 Opt. Commun. 77 295
[4] Sikking A M, Hughes I G, Tierney P and Conish S L 2007 Physica B:At. Mol. Opt. Phys. 40 187
[5] Bjorklund G C and Levenson M D 1983 Appl. Phys. B 32 145
[6] McCarron D J, King S A and Cornish S L 2008 Meas. Sci. Technol. 19 105601
[7] Eble J F and Kaler F S 2007 Appl. Phys. B 88 563
[8] Zhang J, Wei D, Xie C D and Peng K C 2003 Opt. Express 11 1338
[9] Donley E A, Filippo L and Jefferts S R 2005 Rev. Sci. C Instrum. 76 063112
[10] Shirley J H 1982 Opt. Lett. 7 537
[11] Zhang Z, Wang X L and Lin Q 2009 Opt. Express 17 10372
[12] Jaatinen E 1995 Opt. Commun. 120 91
[13] Cheng B, Wang Z Y and Wu B 2014 Chin. Phys. B 23 104222
[14] Ru N, Zhang L, Wang Y and Fan S C 2016 AIP Conf. Proc. 1740 090005
[15] Weiss D S, Young B C and Chu S 1992 Appl. Phys. B 54 321
[1] High-performance frequency stabilization of ultraviolet diode lasers by using dichroic atomic vapor spectroscopy and transfer cavity
Danna Shen(申丹娜), Liangyu Ding(丁亮宇), Qiuxin Zhang(张球新), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Wei Zhang(张威), Xiang Zhang(张翔). Chin. Phys. B, 2020, 29(7): 074210.
[2] Comparative calculation on Li+ solvation in common organic electrolyte solvents for lithium ion batteries
Qi Liu(刘琦), Feng Wu(吴锋), Daobin Mu(穆道斌), Borong Wu(吴伯荣). Chin. Phys. B, 2020, 29(4): 048202.
[3] Non-crossover sub-Doppler DAVLL in selective reflection scheme
Lin-Jie Zhang(张临杰), Hao Zhang(张好), Yan-Ting Zhao(赵延霆), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2019, 28(8): 084211.
[4] Effect of external magnetic field on the shift of resonant frequency in photoassociation of ultracold Cs atoms
Pengwei Li(李鹏伟), Yuqing Li(李玉清), Guosheng Feng(冯国胜), Jizhou Wu(武寄洲), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(1): 013702.
[5] Chaos generation by a hybrid integrated chaotic semiconductor laser
Ming-Jiang Zhang(张明江), Ya-Nan Niu(牛亚楠), Tong Zhao(赵彤), Jian-Zhong Zhang(张建忠), Yi Liu(刘毅), Yu-Hang Xu(徐雨航), Jie Meng(孟洁), Yun-Cai Wang(王云才), An-Bang Wang(王安帮). Chin. Phys. B, 2018, 27(5): 050502.
[6] Electrically pumped metallic and plasmonic nanolasers
Martin T Hill. Chin. Phys. B, 2018, 27(11): 114210.
[7] Semiconductor photonic crystal laser
Wanhua Zheng(郑婉华). Chin. Phys. B, 2018, 27(11): 114211.
[8] Square microcavity semiconductor lasers
Yuede Yang(杨跃德), Haizhong Weng(翁海中), Youzeng Hao(郝友增), Jinlong Xiao(肖金龙), Yongzhen Huang(黄永箴). Chin. Phys. B, 2018, 27(11): 114212.
[9] Broadband tunable Raman soliton self-frequency shift to mid-infrared band in a highly birefringent microstructure fiber
Wei Wang(王伟), Xin-Ying Bi(毕新英), Jun-Qi Wang(王珺琪), Yu-Wei Qu(屈玉玮), Ying Han(韩颖), Gui-Yao Zhou(周桂耀), Yue-Feng Qi(齐跃峰). Chin. Phys. B, 2016, 25(7): 074206.
[10] Laser frequency locking based on the normal and abnormal saturated absorption spectroscopy of 87Rb
Jian-Hong Wan(万剑宏), Chang Liu(刘畅), Yan-Hui Wang(王延辉). Chin. Phys. B, 2016, 25(4): 044204.
[11] Strip silicon waveguide for code synchronization in all-optical analog-to-digital conversion based on a lumped time-delay compensation scheme
Sha Li(李莎), Zhi-Guo Shi(石志国), Zhe Kang(康哲), Chong-Xiu Yu(余重秀), Jian-Ping Wang(王建萍). Chin. Phys. B, 2016, 25(4): 044210.
[12] Optimizational 6-bit all-optical quantization with soliton self-frequency shift and pre-chirp spectral compression techniques based on photonic crystal fiber
Li Sha, Wang Jian-Ping, Kang Zhe, Yu Chong-Xiu. Chin. Phys. B, 2015, 24(8): 084212.
[13] A long-term frequency-stabilized erbium-fiber-laser-based optical frequency comb with an intra-cavity electro-optic modulator
Zhang Yan-Yan, Yan Lu-Lu, Zhao Wen-Yu, Meng Sen, Fan Song-Tao, Zhang Long, Guo Wen-Ge, Zhang Shou-Gang, Jiang Hai-Feng. Chin. Phys. B, 2015, 24(6): 064209.
[14] Graded doping low internal loss 1060-nm InGaAs/AlGaAsquantum well semiconductor lasers
Tan Shao-Yang, Zhai Teng, Zhang Rui-Kang, Lu Dan, Wang Wei, Ji Chen. Chin. Phys. B, 2015, 24(6): 064211.
[15] Tunable and broadband microwave frequency combs based on a semiconductor laser with incoherent optical feedback
Zhao Mao-Rong, Wu Zheng-Mao, Deng Tao, Zhou Zhen-Li, Xia Guang-Qiong. Chin. Phys. B, 2015, 24(5): 054207.
No Suggested Reading articles found!