Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 056804    DOI: 10.1088/1674-1056/27/5/056804
Special Issue: TOPICAL REVIEW — Electron microscopy methods for emergent materials and life sciences
TOPICAL REVIEW—Electron microscopy methods for the emergent materials and life sciences Prev   Next  

High-resolution electron microscopy for heterogeneous catalysis research

Yong Zhu(朱勇), Mingquan Xu(许名权), Wu Zhou(周武)
School of Physical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Heterogeneous catalysts are the most important catalysts in industrial reactions. Nanocatalysts, with size ranging from hundreds of nanometers to the atomic scale, possess activities that are closely connected to their structural characteristics such as particle size, surface morphology, and three-dimensional topography. Recently, the development of advanced analytical transmission electron microscopy (TEM) techniques, especially quantitative high-angle annular dark-field (HAADF) imaging and high-energy resolution spectroscopy analysis in scanning transmission electron microscopy (STEM) at the atomic scale, strengthens the power of (S)TEM in analyzing the structural/chemical information of heterogeneous catalysts. Three-dimensional reconstruction from two-dimensional projected images and the real-time recording of structural evolution during catalytic reactions using in-situ (S)TEM methods further broaden the scope of (S)TEM observation. The atomic-scale structural information obtained from high-resolution (S)TEM has proven to be of significance for better understanding and designing of new catalysts with enhanced performance.
Keywords:  atomic resolution      electron microscopy      three-dimensional (3D) reconstruction      in-situ      heterogeneous catalysts  
Received:  03 March 2018      Revised:  10 April 2018      Published:  05 May 2018
PACS:  68.37.Og (High-resolution transmission electron microscopy (HRTEM))  
  79.20.Uv (Electron energy loss spectroscopy)  
  82.65.+r (Surface and interface chemistry; heterogeneous catalysis at surfaces)  
Corresponding Authors:  Wu Zhou     E-mail:  wuzhou@ucas.ac.cn

Cite this article: 

Yong Zhu(朱勇), Mingquan Xu(许名权), Wu Zhou(周武) High-resolution electron microscopy for heterogeneous catalysis research 2018 Chin. Phys. B 27 056804

[10] Abbet S, Sanchez A, Heiz U, Schneider W D, Ferrari A M, Pacchioni G and Rösch N 2000 J. Am. Chem. Soc. 122 3453
[77] Flannigan D J and Zewail A H 2012 Acc. Chem. Res. 45 1828
[1] Cargnello M, Doan-Nguyen V V T, Gordon T R, Diaz R E, Stach E A, Gorte R J, Fornasiero P and Murray C B 2013 Science 341 771
[11] Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J and Zhang T 2011 Nat. Chem. 3 634
[78] Browning N D, Bonds M A, Campbell G H, Evans J E, LaGrange T, Jungjohann K L, Masiel D J, McKeown J, Mehraeen S, Reed B W and Santala M 2012 Curr. Opin. Solid State Mater. Sci. 16 23
[2] Gao W, Hood Z D and Chi M 2017 Acc. Chem. Res. 50 787
[12] Liu P, Zhao Y, Qin R, Mo S, Chen G, Gu L, Chevrier D M, Zhang P, Guo Q, Zang D, Wu B, Fu G and Zheng N 2016 Science 352 797
[79] Reed B W, Armstrong M R, Browning N D, Campbell G H, Evans J E, LaGrange T and Masiel D J 2009 Microsc. Microanal. 15 272
[3] Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y and Zhang T 2013 Acc. Chem. Res. 46 1740
[13] Zhao C, Dai X, Yao T, Chen W, Wang X, Wang J, Yang J, Wei S, Wu Y and Li Y 2017 J. Am. Chem. Soc. 139 8078
[80] Browning N D 2013 Nat. Chem. 5 363
[4] Williams D B and Carter C B 2009 Transmission Electron Microscopy:A Textbook for Materials Science (New York:Springer) p. 5
[14] Liu W, Zhang L, Liu X, Liu X, Yang X, Miao S, Wang W, Wang A and Zhang T 2017 J. Am. Chem. Soc. 139 10790
[5] Krivanek O, Dellby N and Lupini A 1999 Ultramicroscopy 78 1
[15] Warner J H, Lin Y C, He K, Koshino M and Suenaga K 2014 ACS Nano 8 11806
[6] Zhou W, Kapetanakis M D, Prange M P, Pantelides S T, Pennycook S J and Idrobo J C 2012 Phys. Rev. Lett. 109 206803
[16] Senga R and Suenaga K 2017 Ultramicroscopy 180 150
[7] Lovejoy T C, Ramasse Q M, Falke M, Kaeppel A, Terborg R, Zan R, Dellby N and Krivanek O L 2012 Appl. Phys. Lett. 100 154101
[17] Lin L L, Zhou W, Gao R, Yao S Y, Zhang X, Xu W Q, Zheng S J, Jiang Z, Yu Q L, Li Y W, Shi C, Wen X D and Ma D 2017 Nature 544 80
[8] Thomas J M, Raja R and Lewis D W 2005 Angew. Chem., Int. Ed. 44 6456
[18] Yao S Y, Zhang X, Zhou W and et al. 2017 Science 357 389
[9] Liu J 2017 ACS Catal. 7 34
[19] Karunadasa H I, Montalvo E, Sun Y, Majda M, Long J R and Chang C J 2012 Science 335 698
[10] Abbet S, Sanchez A, Heiz U, Schneider W D, Ferrari A M, Pacchioni G and Rösch N 2000 J. Am. Chem. Soc. 122 3453
[20] Byskov L S, Norskov J K, Clausen B S and Topsoe H 1999 J. Catal. 187 109
[11] Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J and Zhang T 2011 Nat. Chem. 3 634
[21] Topsoe H, Clausen B S and Massoth F E 1996 Hydrotreating Catalysis (Berlin:Springer) p. 31
[12] Liu P, Zhao Y, Qin R, Mo S, Chen G, Gu L, Chevrier D M, Zhang P, Guo Q, Zang D, Wu B, Fu G and Zheng N 2016 Science 352 797
[22] Zhu Y, Ramasse Q M, Brorson M, Moses P G, Hansen L P, Kisielowski C F and Helveg S 2014 Angew. Chem., Int. Ed. 53 10723
[13] Zhao C, Dai X, Yao T, Chen W, Wang X, Wang J, Yang J, Wei S, Wu Y and Li Y 2017 J. Am. Chem. Soc. 139 8078
[23] Liu G L, Robertson A W, Li M M J, Kuo W C H, Darby M T, Muhieddine M H, Lin Y C, Suenaga K, Stamatakis M, Warner J H and Tsang S C E 2017 Nat. Chem. 9 810
[14] Liu W, Zhang L, Liu X, Liu X, Yang X, Miao S, Wang W, Wang A and Zhang T 2017 J. Am. Chem. Soc. 139 10790
[24] Jasinski R 1964 Nature 201 1212
[15] Warner J H, Lin Y C, He K, Koshino M and Suenaga K 2014 ACS Nano 8 11806
[25] Wu G, More K L, Johnston C M and Zelenay P 2011 Science 332 443
[16] Senga R and Suenaga K 2017 Ultramicroscopy 180 150
[26] Lefévre M, Proietti E, Jaouen F and Dodelet J P 2009 Science 324 71
[17] Lin L L, Zhou W, Gao R, Yao S Y, Zhang X, Xu W Q, Zheng S J, Jiang Z, Yu Q L, Li Y W, Shi C, Wen X D and Ma D 2017 Nature 544 80
[27] Bashyam R and Zelenay P 2006 Nature 443 63
[18] Yao S Y, Zhang X, Zhou W and et al. 2017 Science 357 389
[28] Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo J C, Pennycook S J and Dai H 2012 Nat. Nanotechnol. 7 394
[19] Karunadasa H I, Montalvo E, Sun Y, Majda M, Long J R and Chang C J 2012 Science 335 698
[29] Chung H T, Cullen D A, Higgins D, Sneed B T, Holby E F, More K L and Zelenay P 2017 Science 357 479
[20] Byskov L S, Norskov J K, Clausen B S and Topsoe H 1999 J. Catal. 187 109
[30] Su D S, Zhang B and Schloegl R 2015 Chem. Rev. 115 2818
[21] Topsoe H, Clausen B S and Massoth F E 1996 Hydrotreating Catalysis (Berlin:Springer) p. 31
[31] Ercius P, Alaidi O, Rames M J and Ren G 2015 Adv. Mater. 27 5638
[22] Zhu Y, Ramasse Q M, Brorson M, Moses P G, Hansen L P, Kisielowski C F and Helveg S 2014 Angew. Chem., Int. Ed. 53 10723
[32] De Rosier D J 1971 Contemp. Phys. 12 437
[23] Liu G L, Robertson A W, Li M M J, Kuo W C H, Darby M T, Muhieddine M H, Lin Y C, Suenaga K, Stamatakis M, Warner J H and Tsang S C E 2017 Nat. Chem. 9 810
[33] Feng Z, Yang Y, Huang B, Luo X, Li M, Chen Y, Han M, Fu M and Ru J 2013 Philos. Mag. 93 1843
[24] Jasinski R 1964 Nature 201 1212
[34] Weyland M and Midgley P 2016 Transmission Electron Microscopy:Diffraction, Imaging, and Spectrometry (Cham:Springer International Publishing) pp. 343
[25] Wu G, More K L, Johnston C M and Zelenay P 2011 Science 332 443
[35] Li M H, Yang Y Q, Huang B, Luo X, Zhang W, Han M and Ru J Q 2014 Trans. Nonferrous Met. Soc. China 24 3031
[26] Lefévre M, Proietti E, Jaouen F and Dodelet J P 2009 Science 324 71
[36] Xin H L and Muller D A 2009 J. Electron Microsc. 58 157
[27] Bashyam R and Zelenay P 2006 Nature 443 63
[37] Midgley P A and Weyland M 2003 Ultramicroscopy 96 413
[28] Li Y, Zhou W, Wang H, Xie L, Liang Y, Wei F, Idrobo J C, Pennycook S J and Dai H 2012 Nat. Nanotechnol. 7 394
[38] Kawase N, Kato M, Nishioka H and Jinnai H 2007 Ultra microscopy 107 8
[29] Chung H T, Cullen D A, Higgins D, Sneed B T, Holby E F, More K L and Zelenay P 2017 Science 357 479
[39] Thomas J M, Midgley P A, Ducati C and Leary R K 2013 Prog. Nat. Sci.:Mater. Int. 23 222
[30] Su D S, Zhang B and Schloegl R 2015 Chem. Rev. 115 2818
[40] Li H Y, Xin H L, Muller D A and Estroff L A 2009 Science 326 1244
[31] Ercius P, Alaidi O, Rames M J and Ren G 2015 Adv. Mater. 27 5638
[41] Torruella P, Arenal R, de la Pena F, Saghi Z, Yedra L, Eljarrat A, Lopez-Conesa L, Estrader M, Lopez-Ortega A, Salazar-Alvarez G, Nogues J, Ducati C, Midgley P A, Peiro F and Estrade S 2016 Nano Lett. 16 5068
[32] De Rosier D J 1971 Contemp. Phys. 12 437
[42] Gan L, Heggen M, O'Malley R, Theobald B and Strasser P 2013 Nano Lett. 13 1131
[33] Feng Z, Yang Y, Huang B, Luo X, Li M, Chen Y, Han M, Fu M and Ru J 2013 Philos. Mag. 93 1843
[43] Dubau L, Asset T, Chattot R, Bonnaud C, Vanpeene V, Nelayah J and Maillard F 2015 ACS Catal. 5 5333
[34] Weyland M and Midgley P 2016 Transmission Electron Microscopy:Diffraction, Imaging, and Spectrometry (Cham:Springer International Publishing) pp. 343
[44] Geboes B, Ustarroz J, Sentosun K, Vanrompay H, Hubin A, Bals S and Breugelmans T 2016 ACS Catal. 6 5856
[35] Li M H, Yang Y Q, Huang B, Luo X, Zhang W, Han M and Ru J Q 2014 Trans. Nonferrous Met. Soc. China 24 3031
[45] Xin H L, Pach E A, Diaz R E, Stach E A, Salmeron M and Zheng H 2012 ACS Nano 6 4241
[36] Xin H L and Muller D A 2009 J. Electron Microsc. 58 157
[46] Altantzis T, Zanaga D and Bals S 2017 Europhys. Lett. 119 38001
[37] Midgley P A and Weyland M 2003 Ultramicroscopy 96 413
[47] Batenburg K J, Bals S, Sijbers J, Kübel C, Midgley P A, Hernandez J C, Kaiser U, Encina E R, Coronado E A and Van Tendeloo G 2009 Ultramicroscopy 109 730
[38] Kawase N, Kato M, Nishioka H and Jinnai H 2007 Ultra microscopy 107 8
[48] Goris B, Bals S, Van den Broek W, Carbo-Argibay E, Gomez-Grana S, Liz-Marzan L M and Van Tendeloo G 2012 Nat. Mater. 11 930
[39] Thomas J M, Midgley P A, Ducati C and Leary R K 2013 Prog. Nat. Sci.:Mater. Int. 23 222
[49] Goris B, De Beenhouwer J, De Backer A, Zanaga D, Batenburg K J, Sanchez-Iglesias A, Liz-Marzan L M, Van Aert S, Bals S, Sijbers J and Van Tendeloo G 2015 Nano Lett. 15 6996
[40] Li H Y, Xin H L, Muller D A and Estroff L A 2009 Science 326 1244
[50] Yang Y, Chen C C, Scott M C, Ophus C, Xu R, Pryor A, Wu L, Sun F, Theis W, Zhou J, Eisenbach M, Kent P R, Sabirianov R F, Zeng H, Ercius P and Miao J 2017 Nature 542 75
[41] Torruella P, Arenal R, de la Pena F, Saghi Z, Yedra L, Eljarrat A, Lopez-Conesa L, Estrader M, Lopez-Ortega A, Salazar-Alvarez G, Nogues J, Ducati C, Midgley P A, Peiro F and Estrade S 2016 Nano Lett. 16 5068
[51] Bladt E, Pelt D M, Bals S and Batenburg K J 2015 Ultramicroscopy 158 81
[42] Gan L, Heggen M, O'Malley R, Theobald B and Strasser P 2013 Nano Lett. 13 1131
[52] Miao J, Ercius P and Billinge S J L 2016 Science 353 aaf2157
[43] Dubau L, Asset T, Chattot R, Bonnaud C, Vanpeene V, Nelayah J and Maillard F 2015 ACS Catal. 5 5333
[53] Bals S, Goris B, De Backer A, Van Aert S and Van Tendeloo G 2016 MRS Bull. 41 525
[44] Geboes B, Ustarroz J, Sentosun K, Vanrompay H, Hubin A, Bals S and Breugelmans T 2016 ACS Catal. 6 5856
[54] Jinschek J and Helveg S 2012 Micron 43 1156
[45] Xin H L, Pach E A, Diaz R E, Stach E A, Salmeron M and Zheng H 2012 ACS Nano 6 4241
[55] Gai P L, Kourtakis K and Ziemecki S 2000 Microsc. Microanal. 6 335
[46] Altantzis T, Zanaga D and Bals S 2017 Europhys. Lett. 119 38001
[56] Boyes E D and Gai P L 1997 Ultramicroscopy 67 219
[47] Batenburg K J, Bals S, Sijbers J, Kübel C, Midgley P A, Hernandez J C, Kaiser U, Encina E R, Coronado E A and Van Tendeloo G 2009 Ultramicroscopy 109 730
[57] Zhang X F and Kamino T 2006 Microsc. Today 14 18
[48] Goris B, Bals S, Van den Broek W, Carbo-Argibay E, Gomez-Grana S, Liz-Marzan L M and Van Tendeloo G 2012 Nat. Mater. 11 930
[58] Yokosawa T, Alan T, Pandraud G, Dam B and Zandbergen H 2012 Ultramicroscopy 112 47
[49] Goris B, De Beenhouwer J, De Backer A, Zanaga D, Batenburg K J, Sanchez-Iglesias A, Liz-Marzan L M, Van Aert S, Bals S, Sijbers J and Van Tendeloo G 2015 Nano Lett. 15 6996
[59] Yaguchi T, Suzuki M, Watabe A, Nagakubo Y, Ueda K and Kamino T 2011 J. Electron Microsc. 60 217
[50] Yang Y, Chen C C, Scott M C, Ophus C, Xu R, Pryor A, Wu L, Sun F, Theis W, Zhou J, Eisenbach M, Kent P R, Sabirianov R F, Zeng H, Ercius P and Miao J 2017 Nature 542 75
[60] Kawasaki T, Ueda K, Ichihashi M and Tanji T 2009 Rev. Sci. Instrum. 80 113701
[51] Bladt E, Pelt D M, Bals S and Batenburg K J 2015 Ultramicroscopy 158 81
[61] Alan T, Yokosawa T, Gaspar J, Pandraud G, Paul O, Creemer F, Sarro P M and Zandbergen H W 2012 Appl. Phys. Lett. 100 081903
[52] Miao J, Ercius P and Billinge S J L 2016 Science 353 aaf2157
[62] Ross F M 2015 Science 350 aaa9886
[53] Bals S, Goris B, De Backer A, Van Aert S and Van Tendeloo G 2016 MRS Bull. 41 525
[63] Zhang L, Miller B K and Crozier P A 2013 Nano Lett. 13 679
[54] Jinschek J and Helveg S 2012 Micron 43 1156
[64] Xin H L, Alayoglu S, Tao R Z, Genc A, Wang C M, Kovarik L, Stach E A, Wang L W, Salmeron M, Somorjai G A and Zheng H M 2014 Nano Lett. 14 3203
[55] Gai P L, Kourtakis K and Ziemecki S 2000 Microsc. Microanal. 6 335
[65] Vendelbo S B, Elkjaer C F, Falsig H, Puspitasari I, Dona P, Mele L, Morana B, Nelissen B J, van Rijn R, Creemer J F, Kooyman P J and Helveg S 2014 Nat. Mater. 13 884
[56] Boyes E D and Gai P L 1997 Ultramicroscopy 67 219
[66] Jiang Y, Li H, Wu Z, Ye W, Zhang H, Wang Y, Sun C and Zhang Z 2016 Angew. Chem. Int. Ed. 55 12427
[57] Zhang X F and Kamino T 2006 Microsc. Today 14 18
[67] Wang C, Chi M, Li D, van der Vliet D, Wang G, Lin Q, Mitchell J F, More K L, Markovic N M and Stamenkovic V R 2011 ACS Catal. 1 1355
[58] Yokosawa T, Alan T, Pandraud G, Dam B and Zandbergen H 2012 Ultramicroscopy 112 47
[68] Chen S, Ferreira P J, Sheng W, Yabuuchi N, Allard L F and Shao-Horn Y 2008 J. Am. Chem. Soc. 130 13818
[59] Yaguchi T, Suzuki M, Watabe A, Nagakubo Y, Ueda K and Kamino T 2011 J. Electron Microsc. 60 217
[69] Chi M, Wang C, Lei Y, Wang G, Li D, More K L, Lupini A, Allard L F, Markovic N M and Stamenkovic V R 2015 Nat. Commun. 6 8925
[60] Kawasaki T, Ueda K, Ichihashi M and Tanji T 2009 Rev. Sci. Instrum. 80 113701
[70] Dai S, Hou Y, Onoue M, Zhang S, Gao W, Yan X, Graham G W, Wu R and Pan X 2017 Nano Lett. 17 4683
[61] Alan T, Yokosawa T, Gaspar J, Pandraud G, Paul O, Creemer F, Sarro P M and Zandbergen H W 2012 Appl. Phys. Lett. 100 081903
[71] Dai S, Gao W, Zhang S, Graham G W and Pan X 2017 MRS Commun. 7 798
[62] Ross F M 2015 Science 350 aaa9886
[72] Jiang Y, Zhang Z, Yuan W, Zhang X, Wang Y and Zhang Z 2018 Nano Res. 11 42
[63] Zhang L, Miller B K and Crozier P A 2013 Nano Lett. 13 679
[73] Mooney P, Contarato D, Denes P, Gubbens A, Lee B, Lent M and Agard D 2011 Microsc. Microanal. 17 1004
[64] Xin H L, Alayoglu S, Tao R Z, Genc A, Wang C M, Kovarik L, Stach E A, Wang L W, Salmeron M, Somorjai G A and Zheng H M 2014 Nano Lett. 14 3203
[74] Zhang D, Zhu Y, Liu L, Ying X, Hsiung C E, Sougrat R, Li K and Han Y 2018 Science 359 675
[65] Vendelbo S B, Elkjaer C F, Falsig H, Puspitasari I, Dona P, Mele L, Morana B, Nelissen B J, van Rijn R, Creemer J F, Kooyman P J and Helveg S 2014 Nat. Mater. 13 884
[75] Yong W 2018 Sci. China Mater. 61 129
[66] Jiang Y, Li H, Wu Z, Ye W, Zhang H, Wang Y, Sun C and Zhang Z 2016 Angew. Chem. Int. Ed. 55 12427
[76] Li Y, Li Y, Pei A, Yan K, Sun Y, Wu C L, Joubert L M, Chin R, Koh A L, Yu Y, Perrino J, Butz B, Chu S and Cui Y 2017 Science 358 506
[67] Wang C, Chi M, Li D, van der Vliet D, Wang G, Lin Q, Mitchell J F, More K L, Markovic N M and Stamenkovic V R 2011 ACS Catal. 1 1355
[77] Flannigan D J and Zewail A H 2012 Acc. Chem. Res. 45 1828
[68] Chen S, Ferreira P J, Sheng W, Yabuuchi N, Allard L F and Shao-Horn Y 2008 J. Am. Chem. Soc. 130 13818
[78] Browning N D, Bonds M A, Campbell G H, Evans J E, LaGrange T, Jungjohann K L, Masiel D J, McKeown J, Mehraeen S, Reed B W and Santala M 2012 Curr. Opin. Solid State Mater. Sci. 16 23
[69] Chi M, Wang C, Lei Y, Wang G, Li D, More K L, Lupini A, Allard L F, Markovic N M and Stamenkovic V R 2015 Nat. Commun. 6 8925
[79] Reed B W, Armstrong M R, Browning N D, Campbell G H, Evans J E, LaGrange T and Masiel D J 2009 Microsc. Microanal. 15 272
[70] Dai S, Hou Y, Onoue M, Zhang S, Gao W, Yan X, Graham G W, Wu R and Pan X 2017 Nano Lett. 17 4683
[80] Browning N D 2013 Nat. Chem. 5 363
[71] Dai S, Gao W, Zhang S, Graham G W and Pan X 2017 MRS Commun. 7 798
[72] Jiang Y, Zhang Z, Yuan W, Zhang X, Wang Y and Zhang Z 2018 Nano Res. 11 42
[73] Mooney P, Contarato D, Denes P, Gubbens A, Lee B, Lent M and Agard D 2011 Microsc. Microanal. 17 1004
[74] Zhang D, Zhu Y, Liu L, Ying X, Hsiung C E, Sougrat R, Li K and Han Y 2018 Science 359 675
[75] Yong W 2018 Sci. China Mater. 61 129
[76] Li Y, Li Y, Pei A, Yan K, Sun Y, Wu C L, Joubert L M, Chin R, Koh A L, Yu Y, Perrino J, Butz B, Chu S and Cui Y 2017 Science 358 506
[77] Flannigan D J and Zewail A H 2012 Acc. Chem. Res. 45 1828
[78] Browning N D, Bonds M A, Campbell G H, Evans J E, LaGrange T, Jungjohann K L, Masiel D J, McKeown J, Mehraeen S, Reed B W and Santala M 2012 Curr. Opin. Solid State Mater. Sci. 16 23
[79] Reed B W, Armstrong M R, Browning N D, Campbell G H, Evans J E, LaGrange T and Masiel D J 2009 Microsc. Microanal. 15 272
[80] Browning N D 2013 Nat. Chem. 5 363
[1] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[2] Comparison of cavities and extended defects formed in helium-implanted 6H-SiC at room temperature and 750 ℃
Qing Liao(廖庆), Bingsheng Li(李炳生), Long Kang(康龙), Xiaogang Li(李小刚). Chin. Phys. B, 2020, 29(7): 076103.
[3] In-situ SiN combined with etch-stop barrier structure for high-frequency AlGaN/GaN HEMT
Min-Han Mi(宓珉瀚), Sheng Wu(武盛), Ling Yang(杨凌), Yun-Long He(何云龙), Bin Hou(侯斌), Meng Zhang(张濛), Li-Xin Guo(郭立新), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047104.
[4] Characterization of swift heavy ion tracks in MoS2 by transmission electron microscopy
Li-Jun Xu(徐丽君), Peng-Fei Zhai(翟鹏飞), Sheng-Xia Zhang(张胜霞), Jian Zeng(曾健), Pei-Pei Hu(胡培培), Zong-Zhen Li(李宗臻), Li Liu(刘丽), You-Mei Sun(孙友梅), Jie Liu(刘杰). Chin. Phys. B, 2020, 29(10): 106103.
[5] Optically manipulated nanomechanics of semiconductor nanowires
Chenzhi Song(宋晨之), Shize Yang(杨是赜), Xiaomin Li(李晓敏), Xiao Li(李晓), Ji Feng(冯济), Anlian Pan(潘安练), Wenlong Wang(王文龙), Zhi Xu(许智), Xuedong Bai(白雪冬). Chin. Phys. B, 2019, 28(5): 054204.
[6] Amorphous Si critical dimension structures with direct Si lattice calibration
Ziruo Wu(吴子若), Yanni Cai(蔡燕妮), Xingrui Wang(王星睿), Longfei Zhang(张龙飞), Xiao Deng(邓晓), Xinbin Cheng(程鑫彬), Tongbao Li(李同保). Chin. Phys. B, 2019, 28(3): 030601.
[7] PEALD-deposited crystalline GaN films on Si (100) substrates with sharp interfaces
San-Jie Liu(刘三姐), Ying-Feng He(何荧峰), Hui-Yun Wei(卫会云), Peng Qiu(仇鹏), Yi-Meng Song(宋祎萌), Yun-Lai An(安运来), Abdul Rehman(阿布度-拉赫曼), Ming-Zeng Peng(彭铭曾), Xin-He Zheng(郑新和). Chin. Phys. B, 2019, 28(2): 026801.
[8] Orienting the future of bio-macromolecular electron microscopy
Fei Sun(孙飞). Chin. Phys. B, 2018, 27(6): 063601.
[9] Scanning transmission electron microscopy: A review of high angle annular dark field and annular bright field imaging and applications in lithium-ion batteries
Yu-Xin Tong(仝毓昕), Qing-Hua Zhang(张庆华), Lin Gu(谷林). Chin. Phys. B, 2018, 27(6): 066107.
[10] Towards dynamic structure of biological complexes at atomic resolution by cryo-EM
Kai Zhang(张凯). Chin. Phys. B, 2018, 27(6): 066801.
[11] Computing methods for icosahedral and symmetry-mismatch reconstruction of viruses by cryo-electron microscopy
Bin Zhu(朱彬), Lingpeng Cheng(程凌鹏), Hongrong Liu(刘红荣). Chin. Phys. B, 2018, 27(5): 056802.
[12] Quantitative HRTEM and its application in the study of oxide materials
Chun-Lin Jia(贾春林), Shao-Bo Mi(米少波), Lei Jin(金磊). Chin. Phys. B, 2018, 27(5): 056803.
[13] Structural biology revolution led by technical breakthroughs in cryo-electron microscopy
Chang-Cheng Yin(尹长城). Chin. Phys. B, 2018, 27(5): 058703.
[14] Investigation of magnetization reversal process in pinned CoFeB thin film by in-situ Lorentz TEM
Ke Pei(裴科), Wei-Xing Xia(夏卫星), Bao-Min Wang(王保敏), Xing-Cheng Wen(文兴成), Ping Sheng(盛萍), Jia-Ping Liu(刘家平), Xin-Cai Liu(刘新才), Run-Wei Li(李润伟). Chin. Phys. B, 2018, 27(4): 047502.
[15] Bio-macromolecular dynamic structures and functions, illustrated with DNA, antibody, and lipoprotein
Lu Gou(缑璐), Taoli Jin(金桃丽), Shuyu Chen(陈淑玉), Na Li(李娜), Dongxiao Hao(郝东晓), Shengli Zhang(张胜利), Lei Zhang(张磊). Chin. Phys. B, 2018, 27(2): 028708.
No Suggested Reading articles found!