Special Issue:
TOPICAL REVIEW — Electron microscopy methods for emergent materials and life sciences
|
TOPICAL REVIEW—Electron microscopy methods for the emergent materials and life sciences |
Prev
Next
|
|
|
Quantitative HRTEM and its application in the study of oxide materials |
Chun-Lin Jia(贾春林)1,2,3, Shao-Bo Mi(米少波)3, Lei Jin(金磊)1 |
1 Ernst Ruska-Centre(ER-C) for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; 2 School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China; 3 State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract On the basis of a state-of-the-art aberration-corrected transmission electron microscope, the spherical aberration coefficient CS of the objective lens can be tuned to either a positive or a negative value. The use of a negative value of CS combined with an overfocus setting of the objective lens leads to the development of the negative CS imaging (NCSI) technique. Images obtained using the NCSI technique show superior contrast and signal intensity at atomic column positions than the corresponding positive CS images, especially for weakly scattering oxygen columns that are in close proximity to strongly scattering cation columns in oxides. Based on the images obtained under the NCSI condition, quantification of the image contrast allows measurements of the atom positions with a precision of a few picometers and the local chemistry on atomic scale. In the present review, we discuss firstly the benefits of the NCSI technique in studies of oxide materials, and then show a procedure for quantitative analysis of the image based on the absolute value of contrast. In the last part, examples are given for the application of the quantitative high-resolution transmission electron microscopy (HRTEM) to the study of electric dipoles of oxide ferroelectrics and atomic-scale chemistry of interfaces.
|
Received: 15 November 2017
Revised: 06 January 2018
Accepted manuscript online:
|
PACS:
|
68.37.Og
|
(High-resolution transmission electron microscopy (HRTEM))
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
77.55.fg
|
(Pb(Zr,Ti)O3-based films)
|
|
77.80.Dj
|
(Domain structure; hysteresis)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.51390472 and 51471169) and the National Basic Research Program of China (Grant No.2015CB654903). |
Corresponding Authors:
Chun-Lin Jia
E-mail: c.jia@fz-juelich.de,c.jia@mail.xjtu.edu.cn
|
Cite this article:
Chun-Lin Jia(贾春林), Shao-Bo Mi(米少波), Lei Jin(金磊) Quantitative HRTEM and its application in the study of oxide materials 2018 Chin. Phys. B 27 056803
|
[11] |
Jin L, Barthel J, Jia C L and Urban K W 2017 Ultramicroscopy 176 99
|
[1] |
Setter N and Waser R 2000 Acta Mater. 48 151
|
[12] |
Jia C L, Mi S B, Barthel J, Wang D W, Dunin-Borkowski R E, Urban K and Thust A 2014 Nat. Mater. 13 1044
|
[2] |
Scott J F 2007 Science 315 954
|
[13] |
Jia C L, Lentzen M and Urban K 2003 Science 299 870
|
[3] |
Ohtomo A and Hwang H Y 2004 Nature 427 423
|
[14] |
Jia C L, Lentzen M and Urban K 2004 Microsc. Microanal. 10 174
|
[4] |
Mannhart J and Schlom D G 2010 Science 327 1607
|
[15] |
Jia C L, Houben L, Thust A and Barthel J 2010 Ultramicroscopy 110 500
|
[5] |
Nakagawa N, Hwang H Y and Muller D A 2006 Nat. Mater. 5 204
|
[16] |
Urban K, Jia C L, Houben L, Lentzen M, Mi S B and Tillmann K 2009 Phil. Trans. R Soc. A 367 3735
|
[6] |
Jia C L, Mi S B, Urban K, Vrejoiu I, Alexe M and Hesse D 2009 Phys. Rev. Lett. 102 117601
|
[17] |
Hÿtch M J and Stobbs W M 1994 Ultramicroscopy 53 191
|
[7] |
Catalan G, Seidel J, Ramesh R and Scott J F 2012 Rev. Mod. Phys. 84 119
|
[18] |
Thust A 2009 Phys. Rev. Lett. 102 220801
|
[8] |
Sun Z, Ma C, Liu M, Cui J, Lu L, Lu J, Lou X, Jin L, Wang H and Jia C L 2017 Adv. Mater. 29 1604427
|
[19] |
Jia C L, Barthel J, Gunkel F, Dittmann R, Hoffmann-Eifert S, Houben L, Lentzen M and Thust A 2013 Microsc. Microanal. 19 310
|
[9] |
Tang Y L, Zhu Y L, Liu Y, Wang Y J and Ma X L 2017 Nat. Commun. 8 15994
|
[20] |
Kornev I, Fu H and Bellaiche L 2004 Phys. Rev. Lett. 93 196104
|
[10] |
Urban K 2008 Science 321 506
|
[21] |
Aguado-Puente P and Junquera J 2008 Phys. Rev. Lett. 100 177601
|
[11] |
Jin L, Barthel J, Jia C L and Urban K W 2017 Ultramicroscopy 176 99
|
[22] |
Lubk A, Gemming S and Spaldin N A 2009 Phys. Rev. B 80 104110
|
[12] |
Jia C L, Mi S B, Barthel J, Wang D W, Dunin-Borkowski R E, Urban K and Thust A 2014 Nat. Mater. 13 1044
|
[23] |
Jia C L, Urban K, Alexe M, Hesse D and Vrejoiu I 2011 Science 331 1420
|
[13] |
Jia C L, Lentzen M and Urban K 2003 Science 299 870
|
[24] |
Nelson C T, Winchester B, Zhang Y, Kim S J, Melville A, Adamo C, Folkman C M, Baek S H, Eom C B, Schlom D G, Chen L Q and Pan X 2011 Nano Lett. 11 828
|
[14] |
Jia C L, Lentzen M and Urban K 2004 Microsc. Microanal. 10 174
|
[25] |
Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D and Pennycook S J 2015 Science 348 547
|
[15] |
Jia C L, Houben L, Thust A and Barthel J 2010 Ultramicroscopy 110 500
|
[26] |
Peters J J P, Apachitei G, Beanland R, Alexe M and Sanchez A M 2016 Nat. Commun. 7 13484
|
[16] |
Urban K, Jia C L, Houben L, Lentzen M, Mi S B and Tillmann K 2009 Phil. Trans. R Soc. A 367 3735
|
[27] |
Wei X K, Jia C L, Sluka T, Wang B X, Ye Z G and Setter N 2016 Nat. Commun. 7 12385
|
[17] |
Hÿtch M J and Stobbs W M 1994 Ultramicroscopy 53 191
|
[28] |
Vrejoiu I, Rhun G L, Pintilie L, Hesse D, Alexe M and Gösele U 2006 Adv. Mater. 18 1657
|
[18] |
Thust A 2009 Phys. Rev. Lett. 102 220801
|
[29] |
Jia C L, Mi S B, Urban K, Vrejoiu I, Alexe M and Hesse D 2008 Nat. Mater. 7 57
|
[19] |
Jia C L, Barthel J, Gunkel F, Dittmann R, Hoffmann-Eifert S, Houben L, Lentzen M and Thust A 2013 Microsc. Microanal. 19 310
|
[30] |
Jia C L, Jin L, Wang D, Mi S B, Alexe M, Hesse D, Reichlova H, Marti X, Bellaiche L and Urban K 2015 Acta Materialia 82 356
|
[20] |
Kornev I, Fu H and Bellaiche L 2004 Phys. Rev. Lett. 93 196104
|
[31] |
Sosnowska I, Schäfer W, Kockelmann W, Andersen K H and Troyanchuk I O 2002 Appl. Phys. A 74 S1040
|
[21] |
Aguado-Puente P and Junquera J 2008 Phys. Rev. Lett. 100 177601
|
[32] |
Prokhorenko S, Nahas Y and Bellaiche L 2017 Phys. Rev. Lett. 118 147601
|
[22] |
Lubk A, Gemming S and Spaldin N A 2009 Phys. Rev. B 80 104110
|
[23] |
Jia C L, Urban K, Alexe M, Hesse D and Vrejoiu I 2011 Science 331 1420
|
[33] |
Bellaiche L, Gui Z and Kornev I A 2012 J. Phys.:Condens. Matter 24 312201
|
[24] |
Nelson C T, Winchester B, Zhang Y, Kim S J, Melville A, Adamo C, Folkman C M, Baek S H, Eom C B, Schlom D G, Chen L Q and Pan X 2011 Nano Lett. 11 828
|
[34] |
Zhang J Y, Zhao D, Xiao D, Ma C, Du H, Li X, Zhang L, Huang J, Huang H, Jia C L, Tománek D and Niu C 2017 Angew Chem. Int. Ed. 56 1850
|
[25] |
Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D and Pennycook S J 2015 Science 348 547
|
[26] |
Peters J J P, Apachitei G, Beanland R, Alexe M and Sanchez A M 2016 Nat. Commun. 7 13484
|
[27] |
Wei X K, Jia C L, Sluka T, Wang B X, Ye Z G and Setter N 2016 Nat. Commun. 7 12385
|
[28] |
Vrejoiu I, Rhun G L, Pintilie L, Hesse D, Alexe M and Gösele U 2006 Adv. Mater. 18 1657
|
[29] |
Jia C L, Mi S B, Urban K, Vrejoiu I, Alexe M and Hesse D 2008 Nat. Mater. 7 57
|
[30] |
Jia C L, Jin L, Wang D, Mi S B, Alexe M, Hesse D, Reichlova H, Marti X, Bellaiche L and Urban K 2015 Acta Materialia 82 356
|
[31] |
Sosnowska I, Schäfer W, Kockelmann W, Andersen K H and Troyanchuk I O 2002 Appl. Phys. A 74 S1040
|
[32] |
Prokhorenko S, Nahas Y and Bellaiche L 2017 Phys. Rev. Lett. 118 147601
|
[33] |
Bellaiche L, Gui Z and Kornev I A 2012 J. Phys.:Condens. Matter 24 312201
|
[34] |
Zhang J Y, Zhao D, Xiao D, Ma C, Du H, Li X, Zhang L, Huang J, Huang H, Jia C L, Tománek D and Niu C 2017 Angew Chem. Int. Ed. 56 1850
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|