Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047305    DOI: 10.1088/1674-1056/27/4/047305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Low specific on-resistance GaN-based vertical heterostructure field effect transistors with nonuniform doping superjunctions

Wei Mao(毛维)1, Hai-Yong Wang(王海永)1, Peng-Hao Shi(石朋毫)1, Xiao-Fei Wang(王晓飞)2, Ming Du(杜鸣)1, Xue-Feng Zheng(郑雪峰)1, Chong Wang(王冲)1, Xiao-Hua Ma(马晓华)1, Jin-Cheng Zhang(张进成)1, Yue Hao(郝跃)1
1. Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2. School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  A novel GaN-based vertical heterostructure field effect transistor (HFET) with nonuniform doping superjunctions (non-SJ HFET) is proposed and studied by Silvaco-ATLAS, for minimizing the specific on-resistance (RonA) at no expense of breakdown voltage (BV). The feature of non-SJ HFET lies in the nonuniform doping concentration from top to bottom in the n-and p-pillars, which is different from that of the conventional GaN-based vertical HFET with uniform doping superjunctions (un-SJ HFET). A physically intrinsic mechanism for the nonuniform doping superjunction (non-SJ) to further reduce RonA at no expense of BV is investigated and revealed in detail. The design, related to the structure parameters of non-SJ, is optimized to minimize the RonA on the basis of the same BV as that of un-SJ HFET. Optimized simulation results show that the reduction in RonA depends on the doping concentrations and thickness values of the light and heavy doping parts in non-SJ. The maximum reduction of more than 51% in RonA could be achieved with a BV of 1890 V. These results could demonstrate the superiority of non-SJ HFET in minimizing RonA and provide a useful reference for further developing the GaN-based vertical HFETs.
Keywords:  GaN-based vertical HFETs      nonuniform doping superjunctions      minimized specific on-resistance      breakdown voltage  
Received:  21 December 2017      Revised:  08 February 2018      Published:  05 April 2018
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574112, 61334002, 61474091, and 61574110) and the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 605119425012).
Corresponding Authors:  Xiao-Fei Wang     E-mail:  mxfwang@xjtu.edu.cn

Cite this article: 

Wei Mao(毛维), Hai-Yong Wang(王海永), Peng-Hao Shi(石朋毫), Xiao-Fei Wang(王晓飞), Ming Du(杜鸣), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃) Low specific on-resistance GaN-based vertical heterostructure field effect transistors with nonuniform doping superjunctions 2018 Chin. Phys. B 27 047305

[1] Wang L, Hu W D, Chen X S, Lu W 2010 Acta Phys. Sin. 59 5730(in Chinese)
[2] Mao W, Yang C, Hao Y, Zhang J C, Liu H X, Ma X H, Wang C, Zhang J F, Yang L A, Xu S R, Bi Z W, Zhou Z, Yang L, Wang H 2011 Acta Phys. Sin. 60 017205(in Chinese)
[3] Huang H, Liang Y C, Samudra G S, Chang T F and Huang C F 2014 IEEE Trans. Power Electron. 29 2164
[4] Mao W, Fan J S, Du M, Zhang J F, Zheng X F, Wang C, Ma X H, Zhang J C, Hao Y 2016 Chin. Phys. B 25 127305
[5] Li S P, Zhang Z L, Fu K, Yu G H, Cai Y, Zhang B S 2017 Acta Phys. Sin. 66 197301(in Chinese)
[6] Zhang L, Lin Z Y, Luo J, Wang S L, Zhang J C, Hao Y, Dai Y, Chen D Z, Guo L X 2017 Acta Phys. Sin. 66 247302(in Chinese)
[7] Chowdhury S, Wong M H, Swenson B L and Mishra U K 2012 IEEE Electron Dev. Lett. 33 41
[8] Mal S, Agarwal A, Ahmadi E, Bhat K M, Ji D, Laurent M A, Keller S and Chowdhury S 2017 IEEE Electron Dev. Lett. 38 933
[9] Saito W, Kuraguchi M, Takada Y, Tsuda K, Omura I and Ogura T 2005 IEEE Trans. Electron Dev. 52 106
[10] Shrestha N M, Wang Y Y, Li Y M and Chang E Y 2015 Vacuum 118 59
[11] Li Z D and Chow T P 2013 IEEE Trans. Electron Dev. 60 3230
[12] Du J F, Liu D, Zhao Z Q, Bai Z Y, Li L, Mo J H and Yu Q 2015 Superlattices Microstruct. 83 251
[13] Du J F, Liu D, Bai Z Y, Liu Y, Yu Q 2015 Superlattices Microstruct. 85 690
[14] Nie H, Diduck Q, Alvarez B, Edwards A P, Kayes B M, Zhang M, Ye G, Prunty T, Bour D and Kizilyalli I C 2014 IEEE Electron Dev. Lett. 35 939
[15] Chowdhury S and Mishra U K 2013 IEEE Trans. Electron Dev. 60 3060
[16] Yeluri R, Lu J, Hurni C A, Browne D A, Chowdhury S, Keller S, Speck J S and Mishra U K 2015 Appl. Phys. Lett. 106 183502
[17] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W and Hilsenbeck J 1999 J. Appl. Phys. 85 3222
[18] Mnatsakanov T T, Levinshtein M E, Pomortseva L I, Yurkov S N, Simin G S and Khan M A 2003 Solid-State Electron. 47 111
[19] Oǧuzman I H, Bellotti E, Brennan K F, Kolník J, Rongping W, and Ruden P P 1997 J. Appl. Phys. 81 7827
[20] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[21] Piprek J 2003 Semiconductor optoelectronic devices:Introduction to physics and simulation (California:Elsevier Science)
[22] Usikov A, Kovalenkov O, Soukhoveev V, Ivantsov V, Syrkin A, Dmitriev V, Nikiforov A Y, Sundaresan S G, Jeliazkov S J and Davydov A V 2008 Phys. Stat. Sol. 5 1829
[23] Paskova T, Hanser D A and Evans K R 2010 Proc. IEEE 98 1324
[24] Tourret J, Gourmala O, Andre Y, Trassoudaine A, Gil E, Castelluci D and Cadoret R 2009 J. Cryst. Growth 311 1460
[25] Cho H K, Khan F A, Adesida I, Fang Z Q and Look D C 2008 J. Phys. D:Appl. Phys. 41 155314
[26] Liu Z C, Pan J L, Asano A, Ishikawa K, Takeda K, Kondo H, Oda O, Sekine M and Hori M 2017 Jpn. J. Appl. Phys. 56 026502
[27] Hartmann J, Steib F, Zhou H, Ledig J, Nicolai L, Fündling S, Schimpke T, Avramescu A, Varghese T, Trampert A, Stra å burg M, Lugauer H J, Wehmann H H and Waag A 2017 J. Cryst. Growth 476 90
[28] Harrison S E, Voss L F, Torres A M, Frye C D, Shao Q H and Nikolic R J 2017 J. Vac. Sci. Technol. A 35 061303
[1] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[2] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[3] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[4] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
[5] A novel high breakdown voltage and high switching speed GaN HEMT with p-GaN gate and hybrid AlGaN buffer layer for power electronics applications
Yong Liu(刘勇), Qi Yu(于奇), and Jiang-Feng Du(杜江锋). Chin. Phys. B, 2020, 29(12): 127701.
[6] Modeling electric field of power metal-oxide-semiconductor field-effect transistor with dielectric trench based on Schwarz-Christoffel transformation
Zhi-Gang Wang(汪志刚), Tao Liao(廖涛), Ya-Nan Wang(王亚南). Chin. Phys. B, 2019, 28(5): 058503.
[7] Stacked lateral double-diffused metal-oxide-semiconductor field effect transistor with enhanced depletion effect by surface substrate
Qi Li(李琦), Zhao-Yang Zhang(张昭阳), Hai-Ou Li(李海鸥), Tang-You Sun(孙堂友), Yong-He Chen(陈永和), Yuan Zuo(左园). Chin. Phys. B, 2019, 28(3): 037201.
[8] 1.8-kV circular AlGaN/GaN/AlGaN double-heterostructure high electron mobility transistor
Sheng-Lei Zhao(赵胜雷), Zhi-Zhe Wang(王之哲), Da-Zheng Chen(陈大正), Mao-Jun Wang(王茂俊), Yang Dai(戴扬), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(2): 027301.
[9] A snapback-free TOL-RC-LIGBT with vertical P-collector and N-buffer design
Weizhong Chen(陈伟中), Yao Huang(黄垚), Lijun He(贺利军), Zhengsheng Han(韩郑生), Yi Huang(黄义). Chin. Phys. B, 2018, 27(8): 088501.
[10] Closed-form breakdown voltage/specific on-resistance model using charge superposition technique for vertical power double-diffused metal-oxide-semiconductor device with high-κ insulator
Xue Chen(陈雪), Zhi-Gang Wang(汪志刚), Xi Wang(王喜), James B Kuo. Chin. Phys. B, 2018, 27(4): 048502.
[11] A novel P-channel SOI LDMOS structure with non-depletion potential-clamped layer
Wei Li(李威), Zhi Zheng(郑直), Zhigang Wang(汪志刚), Ping Li(李平), Xiaojun Fu(付晓君), Zhengrong He(何峥嵘), Fan Liu(刘凡), Feng Yang(杨丰), Fan Xiang(向凡), Luncai Liu(刘伦才). Chin. Phys. B, 2017, 26(1): 017701.
[12] Numerical and experimental study of the mesa configuration in high-voltage 4H-SiC PiN rectifiers
Xiao-Chuan Deng(邓小川), Xi-Xi Chen(陈茜茜), Cheng-Zhan Li(李诚瞻), Hua-Jun Shen(申华军), Jin-Ping Zhang(张金平). Chin. Phys. B, 2016, 25(8): 087201.
[13] Improving breakdown voltage performance of SOI power device with folded drift region
Qi Li(李琦), Hai-Ou Li(李海鸥), Ping-Jiang Huang(黄平奖), Gong-Li Xiao(肖功利), Nian-Jiong Yang(杨年炯). Chin. Phys. B, 2016, 25(7): 077201.
[14] Ultra-low specific on-resistance high-voltage vertical double diffusion metal-oxide-semiconductor field-effect transistor with continuous electron accumulation layer
Da Ma(马达), Xiao-Rong Luo(罗小蓉), Jie Wei(魏杰), Qiao Tan(谭桥), Kun Zhou(周坤), Jun-Feng Wu(吴俊峰). Chin. Phys. B, 2016, 25(4): 048502.
[15] Effect of gate length on breakdown voltage in AlGaN/GaN high-electron-mobility transistor
Jun Luo(罗俊), Sheng-Lei Zhao(赵胜雷), Min-Han Mi(宓珉瀚), Wei-Wei Chen(陈伟伟), Bin Hou(侯斌), Jin-Cheng Zhang(张进成), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(2): 027303.
No Suggested Reading articles found!