Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047302    DOI: 10.1088/1674-1056/27/4/047302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Gap plasmon-enhanced photoluminescence of monolayer MoS2 in hybrid nanostructure

Le Yu(余乐)1,2, Di Liu(刘頔)1,2, Xiao-Zhuo Qi(祁晓卓)1,2, Xiao Xiong(熊霄)1,2, Lan-Tian Feng(冯兰天)1,2, Ming Li(李明)1,2, Guo-Ping Guo(郭国平)1,2, Guang-Can Guo(郭光灿)1,2, Xi-Feng Ren(任希锋)1,2
1. Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China;
2. Synergetic Innovation Center of Quantum Information & Quantum Physics
Abstract  

Monolayer transition-metal dichalcogenides (TMDs) have attracted a lot of attention for their applications in optics and optoelectronics. Molybdenum disulfide (MoS2), as one of those important materials, has been widely investigated due to its direct band gap and photoluminescence (PL) in visible range. Owing to the fact that the monolayer MoS2 suffers low light absorption and emission, surface plasmon polaritons (SPPs) are used to enhance both the excitation and emission efficiencies. Here, we demonstrate that the PL of MoS2 sandwiched between 200-nm-diameter gold nanoparticle (AuNP) and 150-nm-thick gold film is improved by more than 4 times compared with bare MoS2 sample. This study shows that gap plasmons can possess more optical and optoelectronic applications incorporating with many other emerging two-dimensional materials.

Keywords:  MoS2      surface plasmon polaritons      gap plasmons  
Received:  02 February 2018      Revised:  14 February 2018      Published:  05 April 2018
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61590932 and 11774333), the Anhui Initiative Project in Quantum Information Technologies, China (Grant No. AHY130300), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB24030600), the National Key Research and Development Program of China (Grant No. 2016YFA0301700), and the Fundamental Research Funds for the Central Universities, China.

Corresponding Authors:  Xi-Feng Ren     E-mail:  renxf@ustc.edu.cn

Cite this article: 

Le Yu(余乐), Di Liu(刘頔), Xiao-Zhuo Qi(祁晓卓), Xiao Xiong(熊霄), Lan-Tian Feng(冯兰天), Ming Li(李明), Guo-Ping Guo(郭国平), Guang-Can Guo(郭光灿), Xi-Feng Ren(任希锋) Gap plasmon-enhanced photoluminescence of monolayer MoS2 in hybrid nanostructure 2018 Chin. Phys. B 27 047302

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V and Firsov A A 2004 Science 306 666
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotech. 7 699
[3] Ezawa M 2012 Phys. Rev. B 86 161407
[4] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[5] Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802
[6] Zhu Z Y, Cheng Y C and Schwingenschlogl U 2011 Phys. Rev. B 84 153402
[7] Yin X, Ye Z, Chenet D A, Ye Y, O'Brien K, Hone J C and Zhang X 2014 Science 344 488
[8] Li Z and Carbotte J P 2012 Phys. Rev. B 86 205425
[9] Shan W Y, Lu H Z and Xiao D 2013 Phys. Rev. B 88 125301
[10] Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y and Wang F 2014 Nat. Nanotech. 9 682
[11] Lee C H, Lee G H, Van Der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J and Kim P 2014 Nat. Nanotech. 9 676
[12] Furchi M M, Pospischil A, Libisch F, Burgdorfer J and Mueller T 2014 Nano Lett. 14 4785
[13] Cheng R, Li D H, Zhou H L, Wang C, Yin A X, Jiang S, Liu Y, Chen Y, Huang Y and Duan X F 2014 Nano Lett. 14 5590
[14] Lee Y H, Zhang X Q, Zhang W J, Chang M, Lin C, Chang K, Yu Y, Wang J T, Chang C, Li L and Lin T 2012 Adv. Mater. 24 2320
[15] Najmaei S, Liu Z, Zhou W, Zou X L, Shi G, Lei S D, Yakobson B I, Idrobo J C, Ajayan P M and Lou J 2013 Nat. Mater. 12 754
[16] Van Der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A and Hone J C 2013 Nat. Mater. 12 554
[17] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M W and Chhowalla M 2011 Nano Lett. 11 5111
[18] Mouri S, Miyauchi Y and Matsuda Y 2013 Nano Lett. 13 5944
[19] Joo P, Jo K, Ahn G, Voiry D, Jeong H Y, Ryu S, Chhowalla M and Kim B S 2014 Nano Lett. 14 6456
[20] Nan H, Wang Z, Wang W, Liang Z, Lu Y, Chen Q, He D, Tan P, Miao F and Wang X 2014 ACS Nano 8 5738
[21] Najmaei S, Mlayah A, Arbouet A, Girard C, Léotin J and Lou J 2014 ACS Nano 8 12683
[22] Butun S, Tongay S and Aydin K 2015 Nano Lett. 15 2700
[23] Sobhani A, Lauchner A, Najmaei S, Ayala-Orozco C, Wen F, Lou J and Halas N J 2014 Appl. Phys. Lett. 104 031112
[24] Li M, Zou C L, Ren X F, Xiong X, Cai Y J, Guo G P, Tong L M and Guo G C 2015 Nano Lett. 15 2380
[25] Wang L L, Zou C L, Ren X F, Liu A P, Lv L, Cai Y J, Sun F W, Guo G C and Guo G P 2011 Appl. Phys. Lett. 99 061103
[26] Song S H, Yoon J W, Lee G S, Oh C H and Kim P S 2002 Opt. Express 6 76
[27] Yu X C, Li B B, Wang P, Tong L M, Jiang X F, Li Y, Gong Q H and Xiao Y F 2014 Adv. Mater. 26 7462
[28] Xiao Y F, Liu Y C, Li B B, Chen Y L, Li Y and Gong Q H 2012 Phys. Rev. A 85 031805
[29] Cai Y J, Li M, Xiong X, Yu L, Ren X F, Guo G P and Guo G C 2015 Chin. Phys. Lett. 32 107305
[30] Du L, Wang M and Pan T T 2017 Chin. Phys. B 26 077301
[31] Wang Z, Dong Z G, Gu Y H, Chang Y H, Zhang L, Li L J, Zhao W J, Eda G, Zhang W J, Grinblat G, Maier S A, Yang J K W, Qiu C W and Wee A T S 2016 Nat. Comm. 7 11283
[32] Zhang W H, Fang Z Y and Zhu X 2017 Chem. Rev. 117 5095
[33] Peng Y S, Zheng X L, Tian H W, Cui X Q, Chen H and Zheng W T 2016 Opt. Exp. 70 1751
[34] Yu Y, Ji Z H, Zu S, Du B W, Kang Y M, Li Z W, Zhou Z K, Shi K B and Fang Z Y 2016 Adv. Funct. Mater. 26 6394
[35] Kang Y M, Najmaei S, Liu Z, Bao Y J, Wang Y M, Zhu X, Halas N J, Nordlander P, Ajayan P M, Lou J and Fang Z Y 2014 Adv. Mater. 26 6467
[36] Li B W, Zu S, Zhou J D, Jiang Q, Du B W, Shan H Y, Luo Y, Liu Z, Zhu X and Fang Z Y 2017 ACS Nano 11 9720
[37] Li Z W, Xiao Y, Gong Y, Wang Z, Kang Y, Zu S, Ajayan P M, Nordlander P and Fang Z Y 2015 ACS Nano 9 10158
[38] Kang Y M, Gong Y J, Hu Z J, Li Z W, Qiu Z, Zhu X, Ajayan P M and Fang Z Y 2015 Nanoscale 7 4482
[39] Liu D, Yu L, Xiong X, Yang L, Li Y, Li M, Li H O, Cao G, Xiao M, Xiang B, Min C J, Guo G C, Ren X F and Guo G P 2016 Opt. Exp. 24 27554
[40] Li Z W, Li Y, Wang X L, Yu Y, Tay B, Liu Z and Fang Z Y 2017 ACS Nano 11 1165
[41] Tittl A, Yin X, Giessen H, Tian X D, Tian Z Q, Kremers C, Chigrin D N and Liu N 2013 Nano Lett. 13 1816
[42] Zhan T R, Zhao F Y, Hu X H, Liu X H and Zi J 2012 Phys. Rev. B 86 165416
[43] Kleemann M E, Chikkaraddy R, Alexeev E M, Kos D, Carnegie C, Deacon W, Pury A C D, Gro åe C, Nijs B D, Mertens J, Tartakovskii A I and Baumberg J J 2017 Nat. Commun. 8 1296
[44] Knight M W, Sobhani H, Nordlander P and Halas N J 2011 Science 332 702
[45] Liu Z W, Hou W B, Pavaskar P, Aykol M and Cronin S B 2011 Nano Lett. 11 1111
[46] Peng P, Liu Y C, Xu D, Cao Q T, Lu G W, Gong Q H and Xiao Y F 2017 Phys. Rev. Lett. 119 233901
[47] Xiao Y F, Zou C L, Li B B, Li Y, Dong C H, Han Z F and Gong Q H 2010 Phys. Rev. Lett. 105 153902
[48] Thomann I, Pinaud B A, Chen Z B, Clemens B M, Jaramillo T F and Brongersma M L 2011 Nano Lett. 11 3440
[49] Christopher P, Xin H L, Marimuthu A and Linic S 2012 Nat. Mater. 11 1044
[50] Butun S, Tongay S and Aydin K 2015 Nano Lett. 15 2700
[51] Purcell E M, Torrey H C and Pound R V 1946 Phys. Rev. 69 1
[52] Bhanu U, Islam M R, Tetard L and Khondaker S I 2014 Sci. Rep. 4 5575
[1] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[2] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
[3] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[4] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[5] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[6] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[7] A simple tight-binding approach to topological superconductivity in monolayer MoS2
H Simchi. Chin. Phys. B, 2020, 29(2): 027401.
[8] Characterization of swift heavy ion tracks in MoS2 by transmission electron microscopy
Li-Jun Xu(徐丽君), Peng-Fei Zhai(翟鹏飞)†, Sheng-Xia Zhang(张胜霞), Jian Zeng(曾健), Pei-Pei Hu(胡培培), Zong-Zhen Li(李宗臻), Li Liu(刘丽), You-Mei Sun(孙友梅), and Jie Liu(刘杰)‡. Chin. Phys. B, 2020, 29(10): 106103.
[9] Properties of metal-insulator-metal waveguide loop reflector
Hu Long(龙虎), Xuan-Ke Zeng(曾选科), Yi Cai(蔡懿), Xiao-Wei Lu(陆小微), Hong-Yi Chen(陈红艺), Shi-Xiang Xu(徐世祥), Jing-Zhen Li(李景镇). Chin. Phys. B, 2019, 28(9): 094215.
[10] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[11] Improved performance of back-gate MoS2 transistors by NH3-plasma treating high-k gate dielectrics
Jian-Ying Chen(陈建颖), Xin-Yuan Zhao(赵心愿), Lu Liu(刘璐), Jing-Ping Xu(徐静平). Chin. Phys. B, 2019, 28(12): 128101.
[12] Pressure-mediated contact quality improvement between monolayer MoS2 and graphite
Mengzhou Liao(廖梦舟), Luojun Du(杜罗军), Tingting Zhang(张婷婷), Lin Gu(谷林), Yugui Yao(姚裕贵), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2019, 28(1): 017301.
[13] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
[14] Li adsorption on monolayer and bilayer MoS2 as an ideal substrate for hydrogen storage
Cheng Zhang(张诚), Shaolong Tang(唐少龙), Mingsen Deng(邓明森), Youwei Du(都有为). Chin. Phys. B, 2018, 27(6): 066103.
[15] In situ growth of different numbers of gold nanoparticles on MoS2 with enhanced electrocatalytic activity for hydrogen evolution reaction
Xuan Zhao(赵宣), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Chen Fu(付晨). Chin. Phys. B, 2018, 27(6): 068103.
No Suggested Reading articles found!