Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 034207    DOI: 10.1088/1674-1056/27/3/034207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Enhanced second harmonic generation in a two-dimensional optical micro-cavity

Jian-Jun Zhang(张建军), Hui-Fang Wang(王慧芳), Jun-Hua Hou(候俊华)
School of Physics and Information Science, Shanxi Normal University, Linfen 041004, China
Abstract  

We introduce a two-dimensional Bose-Einstein condensation model consisting of massive photon and photon-pair. Based on the new nonlinear model, the traditional process of second harmonics generation is reinvestigated. In order to describe the process, a new quantum phase, the harmonic phase, is introduced. The order parameter of the new physical phase is also given in this paper.

Keywords:  Bose-Einstein condensation      quantum phase transition      photon  
Received:  19 October 2017      Revised:  24 November 2017      Accepted manuscript online: 
PACS:  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  05.30.Jp (Boson systems)  
  05.70.Fh (Phase transitions: general studies)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11447207 and 11604193).

Corresponding Authors:  Jian-Jun Zhang     E-mail:  jjzhangphys@163.com

Cite this article: 

Jian-Jun Zhang(张建军), Hui-Fang Wang(王慧芳), Jun-Hua Hou(候俊华) Enhanced second harmonic generation in a two-dimensional optical micro-cavity 2018 Chin. Phys. B 27 034207

[1] Zou X Y, Wang L J and Mandel L 1991 Phys. Rev. Lett. 67 318
[2] Shi Y, Yu Z and Fan S 2015 Nature photonics 9 388
[3] Li W D, Feng Z F and Liu Y 2017 Chin. Phys. B 26 013401
[4] Picozzi A, Garnier J, Hansson T, Suret P, Randoux S, Millot G and Christodoulides D 2014 Phys. Rep. 542 1
[5] Cheng Z 2017 Chin. Phys. B 26 046701
[6] Leo F, Hansson T, Ricciardi I, Rosa M D, Coen S, Wabnitz S and Erkintalo M 2016 Phys. Rev. Lett. 116 033901
[7] Grinblat G, Li Y, Nielsen M P, Oulton R F and Maier S A 2016 Nano Lett. 16 4635
[8] Zhou J, Peatross J, Murnane M M, Kapteyn H C and Christov I P 1996 Phys. Rev. Lett. 76 752
[9] Pu Y, Grange R, Hsieh C L and Psaltis D 2010 Phys. Rev. Lett. 104 207402
[10] Mikhailov S A 2011 Phys. Rev. B 84 045432
[11] Leo F, Hansson T, Ricciardi I, Rosa M De, Coen S, Wabnitz S and Erkintalo M 2016 Phys. Rev. Lett. 116 033901
[12] Klaers J, Schmitt J, Vewinger F and Weitz M 2010 Nature 468 545
[13] Klaers J, Schmitt J, Damm T, Vewinger F and Weitz M 2012 Phys. Rev. Lett. 108 160403
[14] Kirton P and Keeling J 2013 Phys. Rev. Lett. 111 100404
[15] HAO Y J 2011 Chin. Phys. Lett. 28 070501
[16] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[17] Eisenstein J P and Macdonald A H 2004 Nature 432 691
[18] Balili R, Hartwell V, Snoke D, Pfeiffer L and West K 2007 Science 316 1007
[19] Nikuni T, Oshikawa M, Oosawa A, and Tanaka H 2000 Phys. Rev. Lett. 84 5868
[20] Moniri S M, Yavari H and Darsheshdar E 2016 Chin. Phys. B 25 0126701
[21] Chiao R Y and Boyce J 1999 Phys. Rev. A 60 4114
[22] Fischer B and Weill R 2012 Opt. Express 20 26704
[23] De Leeuw A W, Stoof H T C and Duine R A 2013 Phys. Rev. A 88 033829
[24] Chiocchetta A and Carusotto I 2014 Phys. Rev. A 90 023633
[25] Sob' yania D N 2013 Phys. Rev. E 88 022132
[26] Kirton P and Keeling J 2015 Phys. Rev. A 91 033826
[27] Van der Wurff E C I, De leeuw A W, Duine R A and Stoof H T C 2014 Phys. Rev. Lett. 113 135301
[28] Weiss C 2016 Phys. Rev. A 94 042124
[29] Cheng Z 2016 Phys. Rev. A 93 023829
[30] Schmitt J, Damm T, Dung D, Vewinger F, klaers J and Weitz M 2015 Phys. Rev. A 92 011602
[31] Marelic J and Nyman R A 2015 Phys. Rev. A 91 033813
[32] Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Kerman A J and Ketterle W 2004 Phys. Rev. Lett. 92 120403
[33] Li S C and Fu L B 2011 Phys. Rev. A 84 023605
[34] Nakajima S 1955 Adv. Phys. 4 363
[35] Cheng Z 1991 Phys. Rev. Lett. 67 2788
[36] Cheng Z 2013 Phys. Rev. A 87 053825
[1] Wave packet dynamics of nonlinear Gazeau-Klauder coherent states of a position-dependent mass system in a Coulomb-like potential
Faustin Blaise Migueu, Mercel Vubangsi, Martin Tchoffo, and Lukong Cornelius Fai. Chin. Phys. B, 2021, 30(6): 060309.
[2] Perfect photon absorption based on the optical parametric process
Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(6): 064203.
[3] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[4] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[5] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[6] Reconstruction and interpretation of photon Doppler velocimetry spectrum for ejecta particles from shock-loaded sample in vacuum
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Song-lin Dang(党松琳), Zong-Qiang Ma(马宗强), Hai-Quan Sun(孙海权), An-Min He(何安民), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(6): 066201.
[7] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[8] Numerical investigation on photonic microwave generation by a sole excited-state emitting quantum dot laser with optical injection and optical feedback
Zai-Fu Jiang(蒋再富), Zheng-Mao Wu(吴正茂), Wen-Yan Yang(杨文艳), Chun-Xia Hu(胡春霞), Yan-Hong Jin(靳艳红), Zhen-Zhen Xiao(肖珍珍), and Guang-Qiong Xia(夏光琼). Chin. Phys. B, 2021, 30(5): 050504.
[9] Micro-scale photon source in a hybrid cQED system
Ming-Bo Chen(陈明博), Bao-Chuan Wang(王保传), Si-Si Gu(顾思思), Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2021, 30(4): 048507.
[10] Zebrafish imaging and two-photon fluorescence imaging using ZnSe quantum dots
Nan-Nan Zhang(张楠楠), Li-Ya Zhou(周立亚), Xiao Liu(刘潇), Zhong-Chao Wei(韦中超), Hai-Ying Liu(刘海英), Sheng Lan(兰胜), Zhao Meng(孟钊), and Hai-Hua Fan(范海华). Chin. Phys. B, 2021, 30(4): 044204.
[11] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[12] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[13] Sensitivity enhancement of micro-optical gyro with photonic crystal
Liu Yang(杨柳), Shuhua Zhao(赵舒华), Jingtong Geng(耿靖童), Bing Xue(薛冰), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2021, 30(4): 044208.
[14] Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving
Xin-Ping Dong(董新平), Xiao-Jing Lu(路晓静), Ming Li(李明), Zheng-Yin Zhao(赵正印), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(4): 044214.
[15] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
No Suggested Reading articles found!