Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 028501    DOI: 10.1088/1674-1056/27/2/028501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhanced radiation-induced narrow channel effects in 0.13-μm PDSOI nMOSFETs with shallow trench isolation

Meng-Ying Zhang(张梦映)1,2, Zhi-Yuan Hu(胡志远)1, Da-Wei Bi(毕大炜)1, Li-Hua Dai(戴丽华)1,2, Zheng-Xuan Zhang(张正选)1
1. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Total ionizing dose responses of different transistor geometries after being irradiated by 60Co γ-rays, in 0.13-μm partially-depleted silicon-on-insulator (PD SOI) technology are investigated. The negative threshold voltage shift in an n-type metal-oxide semiconductor field effect transistor (nMOSFET) is inversely proportional to the channel width due to radiation-induced charges trapped in trench oxide, which is called the radiation-induced narrow channel effect (RINCE). The analysis based on a charge sharing model and three-dimensional technology computer aided design (TCAD) simulations demonstrate that phenomenon. The radiation-induced leakage currents under different drain biases are also discussed in detail.
Keywords:  partiallydepleted silicon-on-insulator (PD SOI)      totalionizingdose (TID)      radiationinduced narrow channel effect (RINCE)      drain induced barrier lowering (DIBL) effect  
Received:  31 August 2017      Revised:  08 November 2017      Accepted manuscript online: 
PACS:  85.30.-z (Semiconductor devices)  
  61.80.-x (Physical radiation effects, radiation damage)  
  07.87.+v (Spaceborne and space research instruments, apparatus, and components (satellites, space vehicles, etc.))  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the Weapon Equipment Pre-Research Foundation of China (Grant No. 9140A11020114ZK34147) and the Shanghai Municipal Natural Science Foundation, China (Grant No. 15ZR1447100).
Corresponding Authors:  Meng-Ying Zhang     E-mail:  myzhang@mail.sim.ac.cn
About author:  85.30.-z; 61.80.-x; 07.87.+v; 85.30.De

Cite this article: 

Meng-Ying Zhang(张梦映), Zhi-Yuan Hu(胡志远), Da-Wei Bi(毕大炜), Li-Hua Dai(戴丽华), Zheng-Xuan Zhang(张正选) Enhanced radiation-induced narrow channel effects in 0.13-μm PDSOI nMOSFETs with shallow trench isolation 2018 Chin. Phys. B 27 028501

[1] Auberton-Herve A J 1996 International Electron Devices Meeting, December 8-11, 1996, San Francisco, CA, USA, p. 3
[2] Schwank J R 1997 Microelectron. Eng. 36 335342
[3] Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103
[4] Snoeys W et al. 2000 Nucl. Instrum. Method Phys. Res. A 439 349
[5] Saks N S, Ancona M G and Modolo J A 1984 IEEE Trans. Nucl. Sci. 31 1249
[6] Faccio F and Cervelli G 2005 IEEE Trans. Nucl. Sci. 52 2413
[7] Chen J Y, Henderson R C, Martin R and Patterson D O 1982 IEEE Trans. Nucl. Sci. 29 1681
[8] Gaillardin M, Goiffon V, Girard S, Martinez M, Magnan P and Paillet P 2011 IEEE Trans. Nucl. Sci. 58 2807
[9] Faccio F, Michelis S, Cornale D, Paccagnella A and Gerardin S 2015 IEEE Trans. Nucl. Sci. 62 2933
[10] Bezhenova V and Michalowska-Forsyth V 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility, May 17-21, 2016, Shenzhen, China, p. 366
[11] Huang H X, Bi D W, Peng C, Zhang Y W and Zhang Z X 2013 Chin. Phys. Lett. 30 080701
[12] Peng C, Hu Z, Zhang Z, Huang H, Ning B and Bi D 2014 Nucl. Instrum. Method Phys. Res. A 748 7078
[13] Ning B, Bi D, Huang H, Zhang Z, Chen M and Zou S 2013 Microelectron. J. 44 8693
[14] Turowski M, Raman A and Schrimpf R D 2004 IEEE Trans. Nucl. Sci. 51 3166
[15] Ortiz-Conde A, García Sánchez F J, Liou J J, Cerdeira A, Estrada M and Yue Y 2002 Microelectron. Reliab. 42 583
[16] Alles M L, Hughes H L, Ball D R, McMarr P J and Schrimpf R D 2014 IEEE Trans. Nucl. Sci. 61 2945
[17] Zhang M Y, Hu Z Y, Zhang Z X, Fan S, Dai L H, Liu X N and Song L 2017 Chin. Phys. Lett. 34 088501
[18] Ning B, Bi D, Huang H, Zhang Z, Hu Z, Chen M and Zou S 2013 Microelectron. Reliab. 53 259
[19] Fan S, Ning B, Hu Z, Zhang Z, Bi D, Peng C, Song L and Dai L 2016 Microelectron. Reliab. 56 19
[20] Neamen D A 2011 Semiconductor physics and devices:basic principles, 4th edn. (New York:McGraw-Hill) pp. 385-390
[21] Youk G U, Khare P S, Schrimpf R D, Massengill L W and Galloway K F 1999 IEEE Trans. Nucl. Sci. 46 1830
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[3] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[4] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[5] Recent advances in two-dimensional layered and non-layered materials hybrid heterostructures
Haixin Ma(马海鑫), Yanhui Xing(邢艳辉), Boyao Cui(崔博垚), Jun Han(韩军), Binghui Wang(王冰辉), and Zhongming Zeng(曾中明). Chin. Phys. B, 2022, 31(10): 108502.
[6] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[7] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[8] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[9] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[10] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[11] A 4H-SiC merged P-I-N Schottky with floating back-to-back diode
Wei-Zhong Chen(陈伟中), Hai-Feng Qin(秦海峰), Feng Xu(许峰), Li-Xiang Wang(王礼祥), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(2): 028503.
[12] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[13] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[14] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[15] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
No Suggested Reading articles found!