Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 124203    DOI: 10.1088/1674-1056/27/12/124203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Polarization-based range-gated imaging in birefringent medium:Effect of size parameter

Heng Tian(田恒)1,2, Jing-Ping Zhu(朱京平)1, Shu-Wen Tan(谭树文)1, Jing-Jing Tian(田晶晶)2,3, Yun-Yao Zhang(张云尧)1, Xun Hou(侯洵)1
1 Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Information Photonic Technique, Xi'an Jiaotong University, Xi'an 710049 China;
2 School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000 China;
3 Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049 China
Abstract  

We have investigated the effect of size parameter of the scatterer on the image quality obtained with polarization-based range-gated imaging in birefringent turbid medium. Both linearly and circularly polarized light were utilized for imaging. The simulated results indicate that the improvement of visibility is more pronounced using circularly polarized light for the birefringent medium composed of smaller-sized scatterers at lower values of optical thickness and the birefringent medium comprising larger-sized scatterers. In contrast, linearly polarized light provides better image quality for the birefringent medium composed of smaller-sized scatterers at larger values of optical thickness. The evolution of the polarization characteristics of backscattered light and target light under the conditions mentioned above was measured to account for these numerical results.

Keywords:  polarization      Monte Carlo simulation      birefringence      scattering  
Received:  26 May 2018      Revised:  22 August 2018      Published:  05 December 2018
PACS:  42.25.Ja (Polarization)  
  05.10.Ln (Monte Carlo methods)  
  42.25.Lc (Birefringence)  
  42.68.Mj (Scattering, polarization)  
Fund: 

Project supported by China Postdoctoral Science Foundation (Grant No. 2016M592788) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2018JM6008).

Corresponding Authors:  Jing-Ping Zhu, Jing-Jing Tian     E-mail:  jpzhu@xjtu.edu.cn;tianjingjing15@163.com

Cite this article: 

Heng Tian(田恒), Jing-Ping Zhu(朱京平), Shu-Wen Tan(谭树文), Jing-Jing Tian(田晶晶), Yun-Yao Zhang(张云尧), Xun Hou(侯洵) Polarization-based range-gated imaging in birefringent medium:Effect of size parameter 2018 Chin. Phys. B 27 124203

[1] Zheng Y P, Si J H, Tan W J, Liu X J, Tong J Y and Hou X 2017 Chin. Phys. Lett. 34 104204
[2] Schmitt J M 1999 IEEE J. Sel. Top. Quantum Electron. 5 1205
[3] Tromberg B J, Svaas, L O, Tsay T T and Haskell R C 1993 Appl. Opt. 32 607
[4] Hu H F, Zhao L, Li X B, Wang H and Liu T G 2018 IEEE Photon. J. 10 6900309
[5] Wu R H, Suo J L, Dai F, Zhang Y D and Dai Q H 2016 Opt. Lett. 41 3948
[6] Gu Y L, Carrizo C, Gilerson A A, Brady P C, Cummings M E, Twardowski M S, Sullivan J M, Ibrahim A I and Kattawar G K 2016 Appl. Opt. 55 626
[7] Shao H R, He Y H, Li W and Ma H 2006 Appl. Opt. 45 4491
[8] Han P L, Liu F, Yang K, Li J J and Shao X P 2017 Appl. Opt. 56 6631
[9] Tian H, Zhu J P, Zhang Y Y, Guan J G and Hou X 2016 Acta Phys. Sin. 65 084201 (in Chinese)
[10] Shen F, Zhang B M, Guo K, Yin Z P and Guo Z Y 2018 IEEE Photon. J. 10 3900212
[11] Zhi D D, Li J J, Gao D Y, Zhai W C, Huang X H and Zheng X B 2017 Chin. Phys. B 26 124201
[12] Ahmad M, Alali S, Kim A, Wood M F G, Ikram M and Vitkin I A 2011 Biomed. Opt. Express 2 3248
[13] Hielscher A H, Mourant J R and Bigio I J 1997 Appl. Opt. 36 125
[14] Ghosh N, Patel H S and Gupta P K 2003 Opt. Express 11 2198
[15] Ni X H and Alfano R R 2004 Opt. Lett. 29 2773
[16] Nothdurft R and Yao G 2005 Opt. Express 13 4185
[17] Cochenour B, Mullen L and Muth J 2010 Opt. Lett. 35 2088
[18] Ghosh N, Wood M F G and Vitkin I A 2009 J. Appl. Phys. 105 102023
[19] Wang X D and Wang L H V 2001 Opt. Express 9 254
[20] Wang X D and Wang L H V 2002 J. Biomed. Opt. 7 279
[21] Otsuki S 2016 Appl. Opt. 55 5652
[22] Baravian C, Dillet J M and Decruppe J P 2007 Phys. Rev. E 75 032501
[23] Alali S, Wang Y T and Vitkin I A 2012 Biomed. Opt. Express 3 3250
[24] Guan J G and Zhu J P 2013 Opt. Express 21 14152
[25] Guan J G, Zhu J P and Tian H 2015 Chin. Phys. Lett. 32 074201
[26] Tian H, Zhu J P, Tan S W, Zhang Y Y and Hou X 2017 AIP Adv. 7 95310
[27] Tuchin V V 2016 J. Biomed. Opt. 21 71114
[28] Bohren C F and Huffman D R 1983 Absorption Scattering Light By Small Particles (New York: John Wiley Sons) p. 112
[1] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
[2] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[3] Radiation force and torque on a two-dimensional circular cross-section of a non-viscous eccentric layered compressible cylinder in acoustical standing waves
F G Mitri. Chin. Phys. B, 2021, 30(2): 024302.
[4] Evidence of potential change in nonsequential double ionization
Changchun Jia(贾昌春), Pu Zhang(张朴), Hua Wen(文华), and Zhangjin Chen(陈长进). Chin. Phys. B, 2021, 30(2): 023401.
[5] Polarization-independent silicon photonic grating coupler for large spatial light spots
Lijun Yang(杨丽君), Xiaoyan Hu(胡小燕), Bin Li(李斌), and Jing Cao(曹静). Chin. Phys. B, 2021, 30(2): 024206.
[6] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[7] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[8] Nonparaxial propagation of radially polarized chirped Airy beams in uniaxial crystal orthogonal to the optical axis
Yaohui Chen(陈耀辉), Lixun Wu(吴理汛), Zhixiong Mo(莫智雄), Lican Wu(吴利灿), and Dongmei Deng(邓冬梅). Chin. Phys. B, 2021, 30(1): 014204.
[9] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[10] Some experimental schemes to identify quantum spin liquids
Yonghao Gao(高永豪), Gang Chen(陈钢). Chin. Phys. B, 2020, 29(9): 097501.
[11] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[12] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[13] Acoustic radiation force on thin elastic shells in liquid
Run-Yang Mo(莫润阳), Jing Hu(胡静), Shi Chen(陈时), Cheng-Hui Wang(王成会). Chin. Phys. B, 2020, 29(9): 094301.
[14] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[15] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
No Suggested Reading articles found!