Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 077401    DOI: 10.1088/1674-1056/26/7/077401
Special Issue: Virtual Special Topic — High temperature superconductivity

Electronic structure of heavy fermion system CePt2In7 from angle-resolved photoemission spectroscopy

Bing Shen(沈兵)1,2, Li Yu(俞理)1, Kai Liu(刘凯)3, Shou-Peng Lyu(吕守鹏)1,2, Xiao-Wen Jia(贾小文)1,4, E D Bauer5, J D Thompson5, Yan Zhang(张艳)1,2, Chen-Lu Wang(王晨露)1,2, Cheng Hu(胡成)1,2, Ying Ding(丁颖)1,2, Xuan Sun(孙璇)1,2, Yong Hu(胡勇)1,2, Jing Liu(刘静)1,2, Qiang Gao(高强)1,2, Lin Zhao(赵林)1, Guo-Dong Liu(刘国东)1, Zu-Yan Xu(许祖彦)6, Chuang-Tian Chen(陈创天)6, Zhong-Yi Lu(卢仲毅)3, X J Zhou(周兴江)1,2,7
1 National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
4 Military Transportation University, Tianjin 300161, China;
5 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA;
6 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100080, China;
7 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

We have carried out high-resolution angle-resolved photoemission measurements on the Ce-based heavy fermion compound CePt2In7 that exhibits stronger two-dimensional character than the prototypical heavy fermion system CeCoIn5. Multiple Fermi surface sheets and a complex band structure are clearly resolved. We have also performed detailed band structure calculations on CePt2In7. The good agreement found between our measurements and the calculations suggests that the band renormalization effect is rather weak in CePt2In7. A comparison of the common features of the electronic structure of CePt2In7 and CeCoIn5 indicates that CeCoIn5 shows a much stronger band renormalization effect than CePt2In7. These results provide new information for understanding the heavy fermion behaviors and unconventional superconductivity in Ce-based heavy fermion systems.

Keywords:  heavy fermion      ARPES      electronic structure      band calculation  
Received:  23 May 2017      Revised:  06 June 2017      Published:  05 July 2017
PACS:  74.70.Tx (Heavy-fermion superconductors)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  79.60.-i (Photoemission and photoelectron spectra)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  

The ARPES experimental work is supported by the National Natural Science Foundation of China (Grant No.11574360),the National Basic Research Program of China (Grant Nos.2015CB921300,2013CB921700,and 2013CB921904),and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No.XDB07020300).The calculation work is supported by the National Natural Science Foundation of China (Grant No.91421304),the Fundamental Research Funds for the Central Universities of China,and the Research Funds of Renmin University of China (Grant Nos.14XNLQ03 and 16XNLQ01).

Corresponding Authors:  Li Yu, Zhong-Yi Lu, X J Zhou     E-mail:;;

Cite this article: 

Bing Shen(沈兵), Li Yu(俞理), Kai Liu(刘凯), Shou-Peng Lyu(吕守鹏), Xiao-Wen Jia(贾小文), E D Bauer, J D Thompson, Yan Zhang(张艳), Chen-Lu Wang(王晨露), Cheng Hu(胡成), Ying Ding(丁颖), Xuan Sun(孙璇), Yong Hu(胡勇), Jing Liu(刘静), Qiang Gao(高强), Lin Zhao(赵林), Guo-Dong Liu(刘国东), Zu-Yan Xu(许祖彦), Chuang-Tian Chen(陈创天), Zhong-Yi Lu(卢仲毅), X J Zhou(周兴江) Electronic structure of heavy fermion system CePt2In7 from angle-resolved photoemission spectroscopy 2017 Chin. Phys. B 26 077401

[1] Stewart G R 1984 Rev. Mod. Phys. 56 755
[2] Gegenwart P, Si Q M and Steglich F 2008 Nat. Phys. 4 186
[3] Thompson J D and Fisk Z 2012 J. Phys. Soc. Jpn. 81 011002
[4] Bauer E D, Lee H O, Sidorov V A, Kurita N, Gofryk K, Zhu J X, Ronning F, Movshovich R, Thompson J D and Park T 2010 Phys. Rev. B 81 180507
[5] Kaczorowski D, Pikul A P, Gnida D and Tran V H 2009 Phys. Rev. Lett. 103 027003
[6] Thompson J D, Nicklas M, Bianchi A, Movshovich R, Llobet A, Bao W, Malinowski A, Hundley M F, Moreno N O, Pagliuso P G, Sarrao J L, Nakatsuji S, Fisk Z, Borth R, Lengyel E, Oeschler N, Sparn G and Steglich F 2003 Physica B 329-333 446
[7] Petrovic C, Pagliuso P G, Hundley M F, Movshovich R, Sarrao J L, Thompson J D, Fisk Z and Monthoux P 2001 J. Phys.-Condes. Matter 13 L337
[8] Sarrao J L, Morales L A, Thompson J D, Scott B L, Stewart G R, Wastin F, Rebizant J, Boulet P, Colineau E and Lander G H 2002 Nature 420 297
[9] Hegger H, Petrovic C, Moshopoulou E G, Hundley M F, Sarrao J L, Fisk Z and Thompson J D 2000 Phys. Rev. Lett. 84 4986
[10] Park T, Ronning F, Yuan H Q, Salamon M B, Movshovich R, Sarrao J L and Thompson J D 2006 Nature 440 65
[11] Thompson J D, Nicklas M, Sidorov V A, Bauer E D, Movshovich R, Curro N J and Sarrao J L 2006 J. Alloy. Compd. 408-412 16
[12] Haule K, Yee C H and Kim K 2010 Phys. Rev. B 81 195107
[13] Sidorov V A, Lu X, Park T, Lee H, Tobash P H, Baumbach R E, Ronning F, Bauer E D and Thompson J D 2013 Phys. Rev. B 88 020503
[14] Kurenbaeva Z M, Murashova E V, Seropegin Y D, Noel H and Tursina A I 2008 Intermetallics 16 979
[15] Bauer E D, Sidorov V A, Lee H, Kurita N, Ronning F, Movshovich R and Thompson J D 2010 J. Phys.:Conf. Ser. 200 012011
[16] Altarawneh M M, Harrison N, McDonald R D, Balakirev F F, Mielke C H, Tobash P H, Zhu J X, Thompson J D, Ronning F and Bauer E D 2011 Phys. Rev. B 83 081103
[17] Krupko Y, Demuer A, Ota S, Hirose Y, Settai R and Sheikin I 2016 Phys. Rev. B 93 085121
[18] Kurahashi S, Ota S, Tomaru S, Hirose Y and Settai R 2015 J. Phys.:Conf. Ser. 592 012006
[19] Tobash P H, Ronning F, Thompson J D, Scott B L, Moll P J W, Batlogg B and Bauer E D 2012 J. Phys.-Condes. Matter 24 015601
[20] Klimczuk T, Walter O, Müchler L, Krizan J W, Kinnart F and Cava R J 2014 J. Phys.-Condes. Matter 26 402201
[21] apRoberts-Warren N, Dioguardi A P, Shockley A C, Lin C H, Crocker J, Klavins P and Curro N J 2010 Phys. Rev. B 81 180403
[22] Jia X W, Liu Y, Yu L, He J F, Zhao L, Zhang W T, Liu H Y, Liu G D, He S L, Zhang J, Lu W, Wu Y, Dong X L, Sun L L, Wang G L, Zhu Y, Wang X Y, Peng Q J, Wang Z M, Zhang S J, Yang F, Xu Z Y, Chen C T and Zhou X J 2011 Chin. Phys. Lett. 28 057401
[23] Liu G D, Wang G L, Zhu Y, Zhang H B, Zhang G C, Wang X Y, Zhou Y, Zhang W T, Liu H Y, Zhao L, Meng J Q, Dong X L, Chen C T, Xu Z Y and Zhou X J 2008 Rev. Sci. Instrum. 79 023105
[24] apRoberts-Warren N, Dioguardi A P, Shockley A C, Lin C H, Crocker J, Klavins P, Pines D, Yang Y F and Curro N J 2011 Phys. Rev. B 83 060408
[25] Blöchl P E 1994 Phys. Rev. B 50 17953
[26] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[27] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[28] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[29] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[32] Souza I, Marzari N and Vanderbilt D 2001 Phys. Rev. B 65 035109
[33] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[34] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
[35] Koitzsch A, Opahle I, Elgazzar S, Borisenko S V, Geck J, Zabolotnyy V B, Inosov D, Shiozawa H, Richter M, Knupfer M, Fink J, Büchner B, Bauer E D, Sarrao J L and Follath R 2009 Phys. Rev. B 79 075104
[36] Koitzsch A, Kim T K, Treske U, Knupfer M, Büchner B, Richter M, Opahle I, Follath R, Bauer E D and Sarrao J L 2013 Phys. Rev. B 88 035124
[37] Kokalj A 2003 Comput. Mater. Sci. 28 155
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[3] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[4] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[5] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[6] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[7] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[8] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[9] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[10] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
[11] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[12] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[13] Doping effects on the stacking fault energies of the γ' phase in Ni-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026401.
[14] Influence of transition metals (Sc, Ti, V, Cr, and Mn) doping on magnetism of CdS
Zhongqiang Suo(索忠强), Jianfeng Dai(戴剑锋), Shanshan Gao(高姗姗), and Haoran Gao(高浩然)$. Chin. Phys. B, 2020, 29(11): 117502.
[15] Evidence for bosonic mode coupling in electron dynamics of LiFeAs superconductor
Cong Li(李聪), Guangyang Dai(代光阳), Yongqing Cai(蔡永青), Yang Wang(王阳), Xiancheng Wang(望贤成), Qiang Gao(高强), Guodong Liu(刘国东), Yuan Huang(黄元), Qingyan Wang(王庆艳), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Changqing Jin(靳常青), Lin Zhao(赵林)†, and X J Zhou(周兴江)‡. Chin. Phys. B, 2020, 29(10): 107402.
No Suggested Reading articles found!