Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 054203    DOI: 10.1088/1674-1056/26/5/054203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theoretical study of micro-optical structure fabrication based on sample rotation and two-laser-beam interference

Yizhen Chen(陈宜臻)1, Xiangxian Wang(王向贤)1, Ru Wang(王茹)1, Hua Yang(杨华)1, Yunping Qi(祁云平)2
1 School of Science, Lanzhou University of Technology, Lanzhou 730050, China;
2 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Abstract  A method for fabricating a micro-optical structure based on sample rotation and two-laser-beam interference is proposed. The rotation process is analyzed using the coordinate transformation in matrix presentation and the theoretical expressions of the optical field distributions corresponding to different sample rotations. By rotating the samples and changing the laser wavelength, various special micro-optical structures can be obtained, such as equally spaced concentric rings and irregular trapezoidal lattices; these structures are demonstrated by simulating the corresponding optical field distributions. The proposed approach may be developed into a low-cost laser interference lithography technology for the fabrication of various micro-optical structures.
Keywords:  lithography      micro-optical structure      laser interference      sample rotation  
Received:  07 November 2016      Revised:  16 December 2016      Published:  05 May 2017
PACS:  42.25.Hz (Interference)  
  81.16.Nd (Micro- and nanolithography)  
  42.82.Cr (Fabrication techniques; lithography, pattern transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61505074), the National Basic Research Program of China (Grant No. 2013CBA01703), the HongLiu Young Teachers Training Program Funded Projects of Lanzhou University of Technology, China (Grant No. Q201509), and the National Undergraduate Innovation Training Program of China (Grant No. 201610731030).
Corresponding Authors:  Xiangxian Wang     E-mail:  wangxx869@126.com

Cite this article: 

Yizhen Chen(陈宜臻), Xiangxian Wang(王向贤), Ru Wang(王茹), Hua Yang(杨华), Yunping Qi(祁云平) Theoretical study of micro-optical structure fabrication based on sample rotation and two-laser-beam interference 2017 Chin. Phys. B 26 054203

[1] Moon J H, Ford J and Yang S 2006 Polym. Advan. Echnol. 17 83
[2] Shibata S, Che Y, Sugihara O, Okamoto N and Kaino T 2004 Jpn. J. Appl. Phys. 43 2370
[3] Yu F, Li P, Shen H, Mathur S, Lehur C M, Bakowsky U and Mücklichd F 2005 Biomaterials 26 2307
[4] Liu Q, Duan X M and Peng C S 2014 Novel Optical Technologies for Nanofabrication (Berlin: Springer-Verlag) pp. 153-178
[5] Heyderman L J, Solak H H, David C, Atkinson D, Cowburn R P and Nolting F 2004 Appl. Phys. Lett. 85 4989
[6] Snow E S and Campbell P M 1994 Appl. Phys. Lett. 64 1932
[7] Harriott L R 2001 Proc. IEEE 89 366
[8] Hinsberg W, Houle F A, Hoffnagle J, Sanchez M, Wallraff G, Morrison M and Frank S 1998 J. Vac. Sci. Technol. 16 3689
[9] Brousseau E B, Dimov S S and Pha D T 2010 Int. J. Adv. Manuf. Tech. 47 161
[10] Hassanzadeh A and Ho Wong K K 2009 Photonics North 2009, August 4, 2009, Quebec, Canada, p. 73861
[11] Xie Z H, Yu W X, Wang T S, Zhang H X, Fu Y Q, Liu H, Li F Y, Lu Z W and Sun Q 2011 Plasmonics 6 565
[12] Sreekanth K V and Murukeshan V M 2010 J. Vac. Sci. Technol. 28 128
[13] Yang F, Chen X, Cho E H, Lee C S, Jin P and Guo L J 2015 Appl. Phys. Express 8 062004
[14] Wang R, Wang X X, Yang H and Ye S 2016 Acta. Phys. Sin. 65 094206 (in Chinese)
[15] Wang X X, Zhang D G, Chen Y K, Zhu L F and Yu W H 2013 Appl. Phys. Lett. 102 031103
[16] Wang R, Wang X X, Yang H and Qi Y P 2017 Chin. Phys. B 26 024202
[17] Xie Q, Hong M H, Tan H L, Chen G X, Shi L P and Chong T C 2008 J. Alloys Compd. 449 261
[18] Seo J H, Park J H, Kim S I, Park B J, Ma Z Q, Choi J and Ju B K 2014 J. Nanosci. Nanotech. 14 1521
[19] Yang H F, He H D, Zhao E L, Han J, Hao J B, Qian J G, Tang W and Zhu H 2014 Laser Phys. 24 065901
[20] Kim H, Jung H, Lee D H, Lee K B and Jeon H 2016 Appl. Opt. 55 354
[21] Hang W Q, Dong T G, Wang G, Liu S L, Huang Z M, Miao X J, Lv Q and Qin C J 2015 Chin. Phys. B 24 084205
[22] Siddique R H, Hünig R, Faisal A, Lemmer U and Hölscher H 2015 Opt. Mater. Express 5 996
[23] Jiang H B, Zhang Y L, Han D D, Xia H, Feng J, Chen Q D, Hong Z R and Sun H B 2014 Adv. Func. Mater. 24 4595
[24] Xuan M D, Dai L G, Jia H Q and Chen H 2014 Optoelectr. Lett. 10 51
[25] Xu J, Wang Z B, Zhang Z, Wang D P and Weng Z K 2014 J. Appl. Phys. 115 203101
[26] Lai N D, Liang W P, Lin J H, Hsu C C and Lin C H 2005 Opt. Express 13 9605
[27] Voisiat B, Gedvilas M, Indrišiūnas S and Račiukaitis G 2011 Phys. Proc. 12 116
[28] Cheng L and Lipson R H 2010 Laser Photon. Rev. 4 568
[29] Wang X X, Wang X D, Yang H, Ye S and Yu J L 2015 J. Func. Mater. 46 20132 (in Chinese)
[30] Hassanzadeh A, Mohammadnezhad M and Mittlerb S 2015 J. Nanophoton. 9 093067
[31] Boas M L 2006 Mathematical Methods in the Physics Science (3nd Edn.) (Chichester: John Wiley and Sons) pp. 126-130
[32] Born M and Wolf E 1999 Principles of Optics (7nd Edn.) (England: Cambridge University Press) pp. 287-289
[1] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
[2] Light trapping and optical absorption enhancement in vertical semiconductor Si/SiO2 nanowire arrays
Ying Wang(王莹), Xin-Hua Li(李新化). Chin. Phys. B, 2018, 27(2): 026102.
[3] Bridge-free fabrication process for Al/AlOx/Al Josephson junctions
Ke Zhang(张珂), Meng-Meng Li(李蒙蒙), Qiang Liu(刘强), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2017, 26(7): 078501.
[4] Theoretical investigation of hierarchical sub-wavelength photonic structures fabricated using high-order waveguide-mode interference lithograph
Ru Wang(王茹), Xiangxian Wang(王向贤), Hua Yang(杨华), Yunping Qi(祁云平). Chin. Phys. B, 2017, 26(2): 024202.
[5] Measurement and analysis of the surface roughness of Ag film used in plasmonic lithography
Gao-Feng Liang(梁高峰), Jiao Jiao(焦蛟), Xian-Gang Luo(罗先刚), Qing Zhao(赵青). Chin. Phys. B, 2017, 26(1): 016801.
[6] Electronic transport properties of silicon junctionless nanowire transistors fabricated by femtosecond laser direct writing
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Hao Wang(王昊), Qi-feng Lyu(吕奇峰), Wang Zhang(张望), Xiang Yang(杨香), Fu-Hua Yang(杨富华). Chin. Phys. B, 2016, 25(6): 068103.
[7] 2-μm single longitudinal mode GaSb-based laterally coupled distributed feedback laser with regrowth-free shallow-etched gratings by interference lithography
Cheng-Ao Yang(杨成奥), Yu Zhang(张宇), Yong-Ping Liao(廖永平), Jun-Liang Xing(邢军亮), Si-Hang Wei(魏思航), Li-Chun Zhang(张立春), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2016, 25(2): 024204.
[8] Fabrication of superconducting NbN meander nanowires by nano-imprint lithography
Mei Yang(杨美), Li-Hua Liu(刘丽华), Lu-Hui Ning(宁鲁慧), Yi-Rong Jin(金贻荣), Hui Deng(邓辉), Jie Li(李洁), Yang Li(李阳), Dong-Ning Zheng(郑东宁). Chin. Phys. B, 2016, 25(1): 017401.
[9] Design and fabrication of structural color by local surface plasmonic meta-molecules
Ma Ya-Qi, Shao Jin-Hai, Zhang Ya-Feng, Lu Bing-Rui, Zhang Si-Chao, Sun Yan, Qu Xin-Ping, Chen Yi-Fang. Chin. Phys. B, 2015, 24(8): 080702.
[10] Enhanced surface plasmon interference lithography from cavity resonance in the grating slits
Guo Kai, Liu Jian-Long, Zhou Ke-Ya, Liu Shu-Tian. Chin. Phys. B, 2015, 24(4): 047301.
[11] Charge trapping in surface accumulation layer of heavily doped junctionless nanowire transistors
Ma Liu-Hong, Han Wei-Hua, Wang Hao, Yang Xiang, Yang Fu-Hua. Chin. Phys. B, 2015, 24(12): 128101.
[12] Confinement-induced nanocrystal alignment of conjugated polymer by the soft-stamped nanoimprint lithography
Li Xiao-Hui, Yu Ji-Cheng, Lu Nai-Yan, Zhang Wei-Dong, Weng Yu-Yan, Gu Zhen. Chin. Phys. B, 2015, 24(10): 104215.
[13] Fabrication and measurement of traceable pitch standard with a big area at trans-scale
Deng Xiao, Li Tong-Bao, Lei Li-Hua, Ma Yan, Ma Rui, Weng Jun-Jing, Li Yuan. Chin. Phys. B, 2014, 23(9): 090601.
[14] Large-scale photonic crystals with inserted defects and their optical properties
Li Chao-Rong, Li Juan, Yang Hu, Zhao Yong-Qiang, Wu Yan, Dong Wen-Jun, Chen Ben-Yong. Chin. Phys. B, 2014, 23(8): 088114.
[15] Analysis of Cr atom focusing deposition properties in the double half Gaussian standing wave field
Chen Sheng, Ma Yan, Zhang Ping-Ping, Wang Jian-Bo, Deng Xiao, Xiao Sheng-Wei, Ma Rui, Li Tong-Bao. Chin. Phys. B, 2014, 23(2): 020301.
No Suggested Reading articles found!