INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Bridge-free fabrication process for Al/AlOx/Al Josephson junctions |
Ke Zhang(张珂)1, Meng-Meng Li(李蒙蒙)1, Qiang Liu(刘强)1, Hai-Feng Yu(于海峰)1,2, Yang Yu(于扬)1,2 |
1 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China;
2 Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract We fabricate different-sized Al/AlOx/Al Josephson junctions by using a simple bridge-free technique, in which only single-layer E-beam resist polymethyl methacrylate (PMMA) is exposed at low accelerate voltage (below 30 kV) and the size of junction can be varied in a large range. Compared with the bridge technique, this fabrication process is very robust because it can avoid collapsing the bridge during fabrication. This makes the bridge-free technique more popular to meet different requirements for Josephson junction devices especially for superconducting quantum bits.
|
Received: 07 March 2017
Revised: 05 April 2017
Accepted manuscript online:
|
PACS:
|
85.25.Cp
|
(Josephson devices)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
85.25.Am
|
(Superconducting device characterization, design, and modeling)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2016YFA0301802) and the National Natural Science Foundation of China (Grant Nos.11474152,91321310,11274156,11504165,and 61521001). |
Corresponding Authors:
Hai-Feng Yu
E-mail: hfyu@nju.edu.cn
|
Cite this article:
Ke Zhang(张珂), Meng-Meng Li(李蒙蒙), Qiang Liu(刘强), Hai-Feng Yu(于海峰), Yang Yu(于扬) Bridge-free fabrication process for Al/AlOx/Al Josephson junctions 2017 Chin. Phys. B 26 078501
|
[1] |
Clarke J and Braginski A I 2004 The SQUID Handbook (Weinhein:Wiley-VCH)
|
[2] |
Mukhanov O A and Semenov V K 1985 Preprint No. 9/1985, Dept. of Physics, Moscow State University, Moscow, Russia
|
[3] |
You J Q and Nori F 2005 Physics Today 58 42
|
[4] |
Yamamoto T, Inomata K, Watanabe M, Matsuba K, Miyazaki T, Oliver W D, Nakamura Y and Tsai J S 2008 Appl. Phys. Lett. 93 042510
|
[5] |
Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
|
[6] |
Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O'Malley P, Roushan P, Wenner J, White T C, Cleland A N and Martinis J M 2013 Phys. Rev. Lett. 111 080502
|
[7] |
Chow J M, Còrcoles A D, Gambetta J M, Rigetti C, Johnson B R, Smolin J A, Rozen J R, Keefe G A, Rothwell M B, Ketchen M B and Steffen M 2011 Phys. Rev. Lett. 107 080502
|
[8] |
Reed M D, DiCarlo L, Johnson B R, Sun L, Schuster D I, Frunzio L and Schoelkopf R J \hrefhttps://doi.org/10.1103/PhysRevLett.105.1736012011 Phys. Rev. Lett. 105 173601
|
[9] |
Jin X Y, Kamal A, Sears A P, Gudmundsen T, Hover D, Miloshi J, Slattery R, Yan F, Yoder J, Orlando T P, Gustavsson S and Oliver W D 2015 Phys. Rev. Lett. 114 240501
|
[10] |
Weber S J, Chantasri A, Dressel J, Jordan A N, Murch K W and Siddiqi I 2014 Nature 511 570
|
[11] |
de Lange G, Risté D, Tiggelman M J, Eichler C, Tornberg L, Johansson G, Wallraff A, Schouten R N and DiCarlo L 2014 Phys. Rev. Lett. 112 080501
|
[12] |
Eichler C, Lang C, Fink J M, Govenius J, Filipp S and Wallraff A 2008 Phys. Rev. Lett. 109 240501
|
[13] |
Liu Y H, Lan D, Tan X S, Zhao J, Zhao P, Li M, Zhang K, Dai K Z, Li Z Y, Liu Q, Huang S D, Xue G M, Xu P, Yu H F, Zhu S L and Yu Y 2015 Appl. Phys. Lett. 107 202601
|
[14] |
Castellanos-Beltran M A, Irwin K D, Hilton G C, Vale L R and Lehnert K W 2008 Nat. Phys. 4 929
|
[15] |
Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V E, Frunzio L, Prober D E, Schoelkopf R J, Girvin S M and Devoret M H 2010 Nature 465 64
|
[16] |
Dolan G J 1977 Appl. Phys. Lett. 31 337
|
[17] |
Lecocq F, Pop I M, Peng Z H, Matei I, Crozes T, Fournier T, Naud C, Guichard W and Buisson O 2011 Nanotechnology 22 315302
|
[18] |
Potts A, Parker G J, Baumberg J J and de P A J 2001 IEE Proceedings-Science Measurement and Technology 148 225
|
[19] |
Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
|
[20] |
Schreier J A, Houck A A, Koch J, Schuster D I, Johnson B R, Chow J M, Gambetta J M, Majer J, Frunzio L, Devoret M H, Girvin S M and Schoelkopf R J 2008 Phys. Rev. B 77 180502
|
[21] |
Paik H, Schuster D I, Bishop L S, Kirchmair G, Catelani G, Sears A P, Johnson B R, Reagor M J, Frunzio L, Glazman L I, GirvinS M, Devoret M H and Schoelkopf R J 2011 Phys. Rev. Lett. 107 240501
|
[22] |
Reed M D, DiCarlo L, Johnson B R, Sun L, Schuster D I, Frunzio L and Schoelkopf R J 2010 Phys. Rev. Lett. 105 173601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|