Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 104215    DOI: 10.1088/1674-1056/24/10/104215
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Confinement-induced nanocrystal alignment of conjugated polymer by the soft-stamped nanoimprint lithography

Li Xiao-Hui (李晓慧)a, Yu Ji-Cheng (俞计成)b, Lu Nai-Yan (陆乃彦)a, Zhang Wei-Dong (张卫东)a, Weng Yu-Yan (翁雨燕)a, Gu Zhen (顾臻)b
a Center for Soft Condensed Matter Physics and Interdisciplinary Research & College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China;
b Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hilland North Carolina State University, Raleigh, NC 27695, USA
Abstract  

Soft-stamped nanoimprint lithography (NIL) is considered as one of the most effective processes of nanoscale patterning because of its low cost and high throughput. In this work, this method is used to emboss the poly (9, 9-dioctylfluorene) film. By reducing the linewidth of the nanogratings on the stamp, the orientations of nanocrystals are confined along the grating vector in the nanoimprint process, where the confinement linewidth is comparable to the geometrical size of the nanocrystal. When the linewidth is about 400 nm, the poly (9, 9-dioctylfluorene) (PFO) nanocrystals could be orderly arranged in the nanogratings, so that both pattern transfer and well-aligned nanocrystal arrangement could be achieved in a single step by the soft-stamped NIL. The relevant mechanism of the nanocrystalline alignment in these nanogratings is fully discussed. The modulation of nanocrystal alignment is of benefit to the charge mobilities and other performances of PFO-based devices for the future applications.

Keywords:  conjugated polymer      soft lithography      nanocrystalline material      x-ray technique  
Received:  20 May 2015      Revised:  17 June 2015      Accepted manuscript online: 
PACS:  42.70.Jk (Polymers and organics)  
  81.16.Nd (Micro- and nanolithography)  
  61.82.Rx (Nanocrystalline materials)  
  78.70.Ck (X-ray scattering)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 21204058).

Corresponding Authors:  Weng Yu-Yan, Gu Zhen     E-mail:  wengyuyan@suda.edu.cn;zgu@email.unc.edu

Cite this article: 

Li Xiao-Hui (李晓慧), Yu Ji-Cheng (俞计成), Lu Nai-Yan (陆乃彦), Zhang Wei-Dong (张卫东), Weng Yu-Yan (翁雨燕), Gu Zhen (顾臻) Confinement-induced nanocrystal alignment of conjugated polymer by the soft-stamped nanoimprint lithography 2015 Chin. Phys. B 24 104215

[1] Aryal M, Trivedi K and Hu W C 2009 ACS Nano 3 3085
[2] Hu Z J, Muls B, Gence L, Serban D A, Hofkens J, Melinte S, Nysten B, Demoustier-Champagne S and Jonas A M 2007 Nano. Lett. 7 3639
[3] Choo S, Choi H J and Lee H 2014 Mater. Lett. 121 170
[4] Zhai T R, Zhang X P and Dou F 2012 Chin. Phys. Lett. 29 104204
[5] Wan H, Bai S S, Li H D, Ding J Q, Yao B, Xie Z Y, Wang L X and Zhang J D 2011 J. Lumin. 131 1393
[6] Chen X, Wan H, Li H D, Cheng F M, Nie W, Yao B, Xie Z Y, Wang L X and Zhang J D 2012 Org. Electron. 13 475
[7] O'Neill M and Kelly S M 2011 Adv. Mater. 23 566
[8] Jiang X, Ishizumi A, Suzuki N, Naito M and Yamauchi Y 2012 Chem. Commun. 48 549
[9] Xie Y H, Xu J G, Song H Y and Zhang Y G 2015 Chin. Phys. B 24 026201
[10] Ding G Z, Wu Y J, Weng Y Y, Zhang W D and Hu Z J 2013 Macromolecules 46 8638
[11] Du D H, Wen H Y, Hu Z J and Zhang W D 2014 Nanotechnology 25 195503
[12] Wen H Y, Zhang W D, Weng Y Y and Hu Z J 2014 RSC Adv. 4 11776
[13] Farcau C and Astilean S 2011 Mater. Lett. 65 2190
[14] Lu N Y and Weng Y Y 2014 Acta Phys. Sin. 63 228104 (in Chinese)
[15] Hu Z J and Jonas A M 2010 Soft Matter 6 21
[16] Chen S H, Su A C, Su C H and Chen S A 2005 Macromolecules 38 379
[17] Liu C F, Wang Q L, Tian H K, Liu J, Geng Y H and Yan D H 2013 J. Phys. Chem. B 117 8880
[18] Wang J, Sun X, Chen L, Zhuang L and Chou S Y 2000 Appl. Phys. Lett. 77 166
[19] Haggans C W, Li L F and Kostuk R K 1993 J. Opt. Soc. Am. A 10 2217
[20] Nguyen T Q, Wu J J, Doan V, Schwartz B J and Tolbert S H 2000 Science 288 652
[21] Sirringhaus H, Brown P J, Friend R H, Nielsen M M, Bechgaard K, Langeveld-Voss B M W, Spiering A J H, Janssen R A J, Meijer E W, Herwig P and de Leeuw D M 1999 Nature 401 685
[1] Control on β conformation of poly(9,9-di-n-octylfluorene) via solvent annealing
Zhi Chao Zhang(张志超), Bing Yue Zhang(张丙悦), Yu Yan Weng(翁雨燕), Tian Hui Zhang(张天辉). Chin. Phys. B, 2019, 28(7): 076101.
[2] A new modulated structure in α-Fe2O3 nanowires
Cai Rong-Sheng (蔡鎔声), Shang Lei (商蕾), Liu Xue-Hua (刘雪华), Wang Yi-Qian (王乙潜), Yuan Lu (袁露), Zhou Guang-Wen (周光文). Chin. Phys. B, 2013, 22(10): 107401.
[3] Brittle-ductile behavior of a nanocrack in nanocrystalline Ni: A quasicontinuum study
Shao Yu-Fei (邵宇飞), Yang Xin (杨鑫), Zhao Xing (赵星), Wang Shao-Qing (王绍青). Chin. Phys. B, 2012, 21(9): 093104.
[4] Investigation of activities of grain boundaries in nanocrystalline Al under an indenter by a multiscale method
Shao Yu-Fei (邵宇飞), Yang Xin (杨鑫), Zhao Xing (赵星), Wang Shao-Qing (王绍青 ). Chin. Phys. B, 2012, 21(8): 083101.
[5] The synthesis and exchange bias effect of monodisperse NiO nanocrystals
Duan Han-Ning(段寒凝), Yuan Song-Liu(袁松柳), Zheng Xian-Feng(郑先锋), and Tian Zhao-Ming(田召明) . Chin. Phys. B, 2012, 21(7): 078101.
[6] Effects of polarons on static polarizabilities and second order hyperpolarizabilities of conjugated polymers
Wang Ya-Dong(王亚东), Meng Yan(孟艳), Di Bing(邸冰), Wang Shu-Ling(王淑玲), and An Zhong(安忠). Chin. Phys. B, 2010, 19(12): 127105.
[7] Grain size reduction of copper subjected to repetitive uniaxial compression combined with accumulative fold
Zou Yong-Tao(邹永涛), Lei Li(雷力), Wang Zhao(王赵), Wang Jiang-Hua(王江华), Zhang Wei(张伟), and He Duan-Wei(贺端威). Chin. Phys. B, 2009, 18(2): 815-820.
[8] Two-step dissociation of a polaron in conjugated polymers
Liu Xiao-Jing(刘晓静), Gao Kun(高琨), Li Yuan(李元), Wei Jian-Hua(魏建华), and Xie Shi-Jie(解士杰). Chin. Phys. B, 2007, 16(7): 2091-2095.
[9] Microstructure and magnetic characteristics of nanocrystalline Ni0.5Zn0.5 ferrite synthesized by a spraying--coprecipitation method
Liu Yin(刘银) and Qiu Tai(丘泰). Chin. Phys. B, 2007, 16(12): 3837-3842.
[10] THE INFLUENCE OF GRAIN SIZE AND TEMPERATURE ON THE MECHANICAL DEFORMATION OF NANOCRYSTALLINE MATERIALS: MOLECULAR DYNAMICS SIMULATION
Wen Yu-hua (文玉华), Zhou Fu-xin (周富信), Liu Yue-wu (刘曰武). Chin. Phys. B, 2001, 10(5): 407-412.
No Suggested Reading articles found!