Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 046401    DOI: 10.1088/1674-1056/26/4/046401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

High pressure electrical transport behavior in SrF2 nanoplates

Xiao-Yan Cui(崔晓岩)1, Ting-Jing Hu(胡廷静)1, Jing-Shu Wang(王婧姝)1, Jun-Kai Zhang(张俊凯)1, Xue-Fei Li(李雪飞)1, Jing-Hai Yang(杨景海)1, Chun-Xiao Gao(高春晓)2
1 Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, China;
2 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  The charge transport behavior of strontium fluoride nanocrystals has been investigated by in situ impedance measurement up to 35 GPa. It was found that the parameters changed discontinuously at each phase transition. The charge carriers in SrF2 nanocrystals include both F- ions and electrons. In the Fm3m phase, pressure makes the electronic transport easier, while makes it more difficult in the Pnma phase. The defects at grain boundaries dominate the electronic transport process. Pressure could make the charge-discharge processes in the Fm3m phase much easier, but make it more difficult in the Pnma phase.
Keywords:  electrical properties      phase transitions      transport properties  
Received:  19 December 2016      Revised:  17 January 2017      Published:  05 April 2017
PACS:  64.60.-i (General studies of phase transitions)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374131, 11674404, 11404137, and 61378085), the Program for New Century Excellent Talents in University, China (Grant No. NCET-13-0824), the Program for the Development of Science and Technology of Jilin Province, China (Grant Nos. 201201079 and 20150204085GX), and the Twentieth Five-Year Program for Science and Technology of Education Department of Jilin Province, China (Grant No. 20150221).
Corresponding Authors:  Ting-Jing Hu, Chun-Xiao Gao     E-mail:  tjhumars@126.com;cc060109@qq.com

Cite this article: 

Xiao-Yan Cui(崔晓岩), Ting-Jing Hu(胡廷静), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓) High pressure electrical transport behavior in SrF2 nanoplates 2017 Chin. Phys. B 26 046401

[1] Sun S, Weiss S and Alivisatos A P 1998 Science 281 2013
[2] Moser A, Takano K, Margulies D T, Albrecht M, Sonobe Y, Ikeda Y, Sun S and Fullerton E E 2002 J. Phys. D: Appl. Phys. 35 R157
[3] Ambashta R D, Yusuf S M, Mukadam M D, Singh S, Wattal P K and Bahadur D 2005 J. Magn. Magn. Mater. 293 8
[4] Rudge S R, Kurtz T L, Vessely C R, Catterall L G and Williamson D L 2000 Biomaterials 21 1411
[5] Feldmann C, Roming M and Trampert K 2006 Small 2 1248
[6] Quan Z W, Yang D M, Yang P P, Zhang X M, Lian H Z, Liu X M and Lin J 2008 Inorg. Chem. 47 9509
[7] Gao P, Xie Y and Li Z 2006 Eur. J. Inorg. Chem. 16 3261
[8] Mao Y B, Zhang F and Wong S S 2006 Adv. Mater. 18 1895
[9] Wang W S, Zhen L, Xu C Y, Chen J Z and Shao W Z 2009 Appl. Mater. Interfaces 1 780
[10] Singh R, Sinha S, Chou P, Hsu N J and Radpour F 1989 J. Appl. Phys. 66 6179
[11] Pratt J N 1990 Metall. Trans. 21A 1223
[12] Chandra S 1981 Superionic Solids. Principles and Application (New York: Oxford) pp. 313-370
[13] Laskar A L and Chandra S 1989 Superionic Solids and Solid Electrolytes (New York: Academic Press) pp. 339-379
[14] Prin W and Heitjans P 1995 Nanostruct. Mater. 6 885
[15] Hu T J, Cui X Y, Gao Y, Han Y H, Liu C L, Liu B, Liu H W, Ma Y Z and Gao C X 2010 Rev. Sci. Instrum. 81 115101
[16] Cui X Y, Hu T J, Han Y H, Gao C X, Peng G, Liu C L, Wu B J, Wang Y, Liu B, Ren W B, Li Y, Su N N, Zou G T, Du F and Chen G 2010 Chin. Phys. Lett. 27 036402
[17] Hu T J, Cui X Y, Li X F, Wang J S, Yang J H and Gao C X 2015 Chin. Phys. Lett. 32 016402
[18] Hu T J, Cui X Y, Li X F, Wang J S, Lv X M, Wang L S, Yang J H and Gao C X 2015 Chin. Phys. B 24 116401
[19] Wang J S, Zhu H Y, Ma C L, Wu X X, Zhang J, Li D M, Cong R D, Liu J and Cui Q L 2013 J. Phys. Chem. C 117 615
[1] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[2] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[3] Electrical properties of m×n cylindrical network
Zhi-Zhong Tan(谭志中), Zhen Tan(谭震). Chin. Phys. B, 2020, 29(8): 080503.
[4] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[5] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[6] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[7] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[8] Calculation of the infrared frequency and the damping constant (full width at half maximum) for metal organic frameworks
M Kurt, H Yurtseven, A Kurt, S Aksoy. Chin. Phys. B, 2019, 28(6): 066401.
[9] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
[10] Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films
Hui Xu(徐辉), Jian-Jun Liu(刘建军), Hai-Tao Ye(叶海涛), D J Coathup, A V Khomich, Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2018, 27(9): 096104.
[11] Growth and transport properties of topological insulator Bi2Se3 thin film on a ferromagnetic insulating substrate
Shanna Zhu(朱珊娜), Gang Shi(史刚), Peng Zhao(赵鹏), Dechao Meng(孟德超), Genhao Liang(梁根豪), Xiaofang Zhai(翟晓芳), Yalin Lu(陆亚林), Yongqing Li(李永庆), Lan Chen(陈岚), Kehui Wu(吴克辉). Chin. Phys. B, 2018, 27(7): 076801.
[12] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
[13] Non-monotonic dependence of current upon i-width in silicon p-i-n diodes
Zheng-Peng Pang(庞正鹏), Xin Wang(王欣), Jian Chen(陈健), Pan Yang(杨盼), Yang Zhang(张洋), Yong-Hui Tian(田永辉), Jian-Hong Yang(杨建红). Chin. Phys. B, 2018, 27(6): 066106.
[14] Multinary diamond-like chalcogenides for promising thermoelectric application
Dan Zhang(张旦), Hong-Chang Bai(白洪昌), Zhi-Liang Li(李志亮), Jiang-Long Wang(王江龙), Guang-Sheng Fu(傅广生), Shu-Fang Wang(王淑芳). Chin. Phys. B, 2018, 27(4): 047206.
[15] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
No Suggested Reading articles found!