Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 040303    DOI: 10.1088/1674-1056/26/4/040303
REVIEW Prev   Next  

Continuous variable quantum key distribution

Yong-Min Li(李永民)1,2, Xu-Yang Wang(王旭阳)1,2, Zeng-Liang Bai(白增亮)1,2, Wen-Yuan Liu(刘文元)1,2, Shen-Shen Yang(杨申申)1,2, Kun-Chi Peng(彭堃墀)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

Quantum key distribution enables unconditionally secure key distribution between two legitimate users. The information-theoretic security is guaranteed by the fundamental laws of quantum physics. Initially, the quantum key distribution protocol was proposed based on the qubits. Later on, it was found that quantum continuous variables can also be exploited for this target. The continuous variable quantum key distribution can build upon standard telecommunication technology and exhibits a higher secret key rate per pulse at a relatively short distance due to the possibility of encoding more than 1 bit per pulse. In this article, we review the current status of the continuous variable quantum key distribution research, including its basic principle, experimental implementations, security and future directions; the experimental progress in this field made by our group is also presented.

Keywords:  quantum key distribution      continuous variable      quantum optics      quantum communication     
Received:  21 November 2016      Published:  05 April 2017
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 61378010 and 11504219), the Key Project of the Ministry of Science and Technology of China (Grant No. 2016YFA0301403), the Natural Science Foundation of Shanxi Province, China (Grant No. 2014011007-1), and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province, China.

Corresponding Authors:  Yong-Min Li     E-mail:

Cite this article: 

Yong-Min Li(李永民), Xu-Yang Wang(王旭阳), Zeng-Liang Bai(白增亮), Wen-Yuan Liu(刘文元), Shen-Shen Yang(杨申申), Kun-Chi Peng(彭堃墀) Continuous variable quantum key distribution 2017 Chin. Phys. B 26 040303

[1] Vernam G S 1926 J. Am. Inst. Elec. Eng. 55 109
[2] Rivest R L, Shamir A and Adleman L M 1978 Commun. ACM 21 120
[3] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, 1984, India, p. 175
[4] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[5] Braunstein S L and Loock P 2005 Rev. Mod. Phys. 77 513
[6] Wang X B, Hiroshima T, Tomita A and Hayashi M 2007 Phys. Rep. 448 1
[7] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[8] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C Shapiro J H and Lioyd S 2012 Rev. Mod. Phys. 84 621
[9] Lo H W, Curty M and Tamaki K 2014 Nat. Photon. 8 595
[10] Elliott C, Colvin A, Pearson D, Pikalo O, Schlafer J and Yeh H Proceedings of SPIE 5815, Quantum Information and Computation III, March 28, 2005, Orlando, USA, p. 138
[11] Peev M, Pacher C, Alléaume R, et al. 2009 New J. Phys. 11 075001
[12] Stucki, Legré D M, Buntschu F, et al. 2011 New J. Phys. 13 123001
[13] Chen T Y, Liang H, Liu Y, Cai W Q, Ju L, Liu W Y, Wang J, Yin H, Chen K, Chen Z B, Peng C Z and Pan J W 2009 Opt. Express 17 6540
[14] Wang S, Chen W, Yin Z Q, Zhang Y, Zhang T, Li H W, Xu F X, Zhou Z, Yang Y, Huang D J, Zhang L J, Li F Y, Liu D, Wang Y G, Guo G C and Han Z F 2010 Opt. Lett. 35 2454
[15] Sasaki M, Fujiwara M, Ishizukaet H, et al. 2011 Opt. Express 19 10387
[16] Fröhlich B, Dynes J F, Lucamarini M, Sharpe A W, Yuan Z and Shields A J 2013 Nature 501 69
[17] Ralph T C 1999 Phys. Rev. A 61 010303
[18] Hillery M 2000 Phys. Rev. A 61 022309
[19] Reid M D 2000 Phys. Rev. A 62 062308
[20] Cerf N J, Lévy M and Assche G V 2001 Phys. Rev. A 63 052311
[21] Gottesman, D and Preskill J 2001 Phys. Rev. A 63 022309
[22] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[23] Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C and Lam P K 2004 Phys. Rev. Lett. 93 170504
[24] Lance A M, Symul T, Sharma V, Weedbrook C, Ralph T C and Lam P K 2005 Phys. Rev. Lett. 95 180503
[25] Su X L Wang W Z, Wang Y, Jia X J, Xie C D and Peng K C 2009 Europhys. Lett. 87 20005
[26] García-Patrón R and Cerf N J 2009 Phys. Rev. Lett. 102 130501
[27] Madsen L S, Usenko V C, Lassen M, Filip R and Andersen U L 2012 Nat. Commun. 3 1083
[28] Usenko V C and Filip R 2011 New J. Phys. 13 113007
[29] Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tuaale-Brouri R, McLaughlin S W and Grangier P 2007 Phys. Rev. A 76 042305
[30] Grosshans F, Cerf N J, Wenger J, Tualle-Brouri R and Grangier P 2003 Quan. Inform. & Comput. 3 535
[31] Silberhorn C, Ralph T C, Lütkenhaus N and Leuchs G 2002 Phys. Rev. Lett. 89 167901
[32] Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
[33] Legré M, Zbinden H and Gisin N 2006 Quantum Inform. Comput. 6 326
[34] Qi B, Huang L L, Qian L, Lo H K 2007 Phys. Rev. A 76 052323
[35] Leverrier A and Grangier P 2009 Phys. Rev. Lett. 102 180504
[36] Xuan Q D, Zhang Z S and Voss P L 2009 Opt. Express 17 24244
[37] Wang X Y, Bai Z L, Wang S F, Li Y M and Peng K C 2013 Chin. Phys. Lett. 30 010305
[38] Leverrier A, Alléaume R, Boutros J, Gilles Z and Philippe G 2008 Phys. Rev. A 77 042325
[39] Jouguet P, Kunz-Jacques S and Leverrier A 2011 Phys. Rev. A 84 062317
[40] Jouguet P, Elkouss D and Kunz-Jacques S 2014 Phys. Rev. A 90 042329
[41] Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P and Diamanti E 2013 Nat. Photon. 7 378
[42] Huang D, Lin D, Wang C, Liu W Q, Fang S H, Peng J Y, Huang P and Zeng G H 2015 Opt. Express 23 17511
[43] Wang X Y, Liu J Q, Li X F and Li Y M 2015 IEEE J. Quantum Electron. 51 5200206
[44] Wang X Y, Bai Z L, Du P Y, Li Y M and Peng K C 2012 Chin. Phys. Lett. 29 124202
[45] Liu J Q, Wang X Y, Bai Z L and Li Y M 2016 Acta Phys. Sin. 65 100303 (in Chinese)
[46] Li Y M, Wang N, Wang X Y and Bai Z L 2014 J. Opt. Soc. Am. B 31 2379
[47] Bai Z L, Wang X Y, Yang S S and Li Y M 2016 Sci. China-Phys. Mech. Astron. 59 614201
[48] Devetak I and Winter A 2005 Proc. R. Soc. A 461 207
[49] Grosshans F 2005 Phys. Rev. Lett. 94 020504
[50] Navascues M and Acin A 2005 Phys. Rev. Lett. 94 020505
[51] Wolf M M, Giedke G and Cirac J I 2006 Phys. Rev. Lett. 96 080502
[52] Navascués M, Grosshans, F and Acín A 2006 Phys. Rev. Lett. 97 190502
[53] García-Patrón R and Cerf N J 2006 Phys. Rev. Lett. 97 190503
[54] Renner R and Cirac J I 2009 Phys. Rev. Lett. 102 110504
[55] Usenko V C and Filip R 2010 Phys. Rev. A 81 022318
[56] Furrer F, Franz T, Berta M, Leverrier A, Scholz V B, Tomamichel M and Werner R F 2012 Phys. Rev. Lett. 109 100502
[57] Weedbrook C, Pirandola S and Ralph T C 2012 Phys. Rev. A 86 022318
[58] Leverrier A, García-Patrón R, Renner R and Cerf N J 2013 Phys. Rev. Lett. 110 030502
[59] Walk N, Ralph T C, Symul T and Lam P K 2013 Phys. Rev. A 87 020303
[60] Furrer F 2014 Phys. Rev. A 90 042325
[61] Leverrier A 2015 Phys. Rev. Lett. 114 070501
[62] Usenko V C and Grosshans F 2015 Phys. Rev. A 92 062337
[63] Ben-Or M, Horodecki M, Leung D W, Mayers D and Oppenheim J 2005 In: Kilian J (ed.): TCC 2005, LNCS 3378, p. 386
[64] Renner R and König R 2005 In: Kilian J (ed.): TCC 2005, LNCS 3378, p. 407
[65] Diamanti E and Leverrier A 2015 Entropy 17 6072
[66] Ma X C, Sun S H, Jiang M S and Liang L M 2013 Phys. Rev. A 88 022339
[67] Jouguet P, Kunz-Jacques S and Diamanti E 2013 Phys. Rev. A 87 062313
[68] Qin H, Kumar R and Alléaume R 2013 In: Lewis K L, Hollins R C, Merlet T J, Gruneisen M T, Dusek M, Rarity J G and Carapezza E M (ed.): Proceedings of SPIE 8899, Emerging Technologies in Security and Defence; and Quantum Security II; and Unmanned Sensor Systems X, September 23, 2013, Dresden, Germany, 8990N
[69] Ma X C, Sun S H, Jiang M and Liang L M 2013 Phys. Rev. A 87 052309
[70] Huang J Z, Kunz-Jacques S, Jouguet P, Weedbrook C, Yin Z Q, Wang S, Chen W, Guo G C and Han Z F 2014 Phys. Rev. A 89 032304
[71] Jouguet P and Kunz-Jacques S 2015 Phys. Rev. A 91 022307.
[72] Qi B, Lougovski P, Pooser R, Grice W and Bobrek M 2015 Phys. Rev. X 5 041009
[73] Soh D B S, Brif C, Coles P J, Lütkenhaus N, Camacho R M, Urayama J and Sarovar M 2015 Phys. Rev. X 5 041010
[74] Huang D, Huang P, Lin D, Wang C and Zeng G H 2015 Opt. Lett. 40 3695
[75] Acín A, Brunner N, Gisin N, Massar S, Pironio S and Scarani V 2007 Phys. Rev. Lett. 98 230501
[76] Marshall K and Weedbrook C 2014 Phys. Rev. A 90 042311
[77] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[78] Ma X F and Razavi M 2012 Phys. Rev. A 86 062319
[79] Zhou Y H, Yu Z W and Wang X B 2016 Phys. Rev. A 93 042324
[80] Li Z, Zhang Y C, Xu F, Peng X and Guo H 2014 Phys. Rev. A 89 052301
[81] Ma X C, Sun S H, Jiang M S, Gui M and Liang L M 2014 Phys. Rev. A 89 042335
[82] Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen C S and Andersen U L 2015 Nat. Photon. 9 397
[83] Blandino R, Leverrier A, Barbieri M, Etesse J, Grangier P and Tualle-Brouri R 2012 Phys. Rev. A 86 012327
[84] Fiurasek J and Cerf N J 2012 Phys. Rev. A 86 060302
[85] Huang P, He G Q, Fang J and Zeng G H 2013 Phys. Rev. A 87 012317
[86] Li Z Y, Zhang Y C, Wang X Y, Xu B J, Peng X and Guo H 2016 Phys. Rev. A 93 012310
[87] Qi B, Zhu W, Qian L and Lo H K 2010 New J. Phys. 12 103042
[88] Kumar R, Qin H and Alléaume R 2015 New J. Phys. 17 043027
[89] Orieux A and Diamanti E 2016 J. Opt. 18 083002
[90] Zhang L J, Silberhorn C and Walmsley I A 2008 Phys. Rev. Lett. 100 110504
[91] Zhong T, Zhou H C, Horansky R D, Lee C, Verma V B, Lita A E, Restelli A, Bienfang J C, Mirin R P, Gerrits T, Nam S W, Marsili F, Shaw M D, Zhang Z S, Wang L G, Englund D, Wornell G W, Shapiro J H and Wong F N C 2015 New J. Phys. 17 022002
[1] One-decoy state reference-frame-independent quantum key distribution
Xiang Li(李想), Hua-Wei Yuan(远华伟), Chun-Mei Zhang(张春梅), Qin Wang(王琴). Chin. Phys. B, 2020, 29(7): 070303.
[2] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[3] Hybrid linear amplifier-involved detection for continuous variable quantum key distribution with thermal states
Yu-Qian He(贺宇千), Yun Mao(毛云), Hai Zhong(钟海), Duang Huang(黄端), Ying Guo(郭迎). Chin. Phys. B, 2020, 29(5): 050309.
[4] Reconciliation for CV-QKD using globally-coupled LDPC codes
Jin-Jing Shi(石金晶), Bo-Peng Li(李伯鹏), Duan Huang(黄端). Chin. Phys. B, 2020, 29(4): 040301.
[5] Reference-frame-independent quantum key distribution with an untrusted source
Jia-Ji Li(李家骥), Yang Wang(汪洋), Hong-Wei Li(李宏伟), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(3): 030303.
[6] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[7] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
[8] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[9] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[10] Performance analysis of continuous-variable measurement-device-independent quantum key distribution under diverse weather conditions
Shu-Jing Zhang(张淑静), Chen Xiao(肖晨), Chun Zhou(周淳), Xiang Wang(汪翔), Jian-Shu Yao(要建姝), Hai-Long Zhang(张海龙), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(2): 020301.
[11] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[12] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
[13] Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter
Ge-Hai Du(杜舸海), Hong-Wei Li(李宏伟), Yang Wang(汪洋), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(9): 090301.
[14] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[15] Temperature effects on atmospheric continuous-variable quantum key distribution
Shu-Jing Zhang(张淑静), Hong-Xin Ma(马鸿鑫), Xiang Wang(汪翔), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏), Hai-Long Zhang(张海龙). Chin. Phys. B, 2019, 28(8): 080304.
No Suggested Reading articles found!