Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 036801    DOI: 10.1088/1674-1056/26/3/036801
Special Issue: TOPICAL REVIEW — 2D materials: physics and device applications
TOPICAL REVIEW—2D materials: physics and device applications Prev   Next  

Photodetecting and light-emitting devices based on two-dimensional materials

Yuanfang Yu(于远方)1, Feng Miao(缪峰)2, Jun He(何军)3, Zhenhua Ni(倪振华)1
1 Department of Physics and Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 211189, China;
2 National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
3 CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China

Two-dimensional (2D) materials, e.g., graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP), have demonstrated fascinating electrical and optical characteristics and exhibited great potential in optoelectronic applications. High-performance and multifunctional devices were achieved by employing diverse designs, such as hybrid systems with nanostructured materials, bulk semiconductors and organics, forming 2D heterostructures. In this review, we mainly discuss the recent progress of 2D materials in high-responsive photodetectors, light-emitting devices and single photon emitters. Hybrid systems and van der Waals heterostructure-based devices are emphasized, which exhibit great potential in state-of-the-art applications.

Keywords:  two-dimensional materials      photodetector      light emission      heterostructure     
Received:  23 September 2016      Published:  05 March 2017
PACS: (Semiconductors)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  78.60.Fi (Electroluminescence)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 61422503 and 61376104), the Open Research Funds of Key Laboratory of MEMS of Ministry of Education of China, and the Fundamental Research Funds for the Central Universities of China.

Corresponding Authors:  Zhenhua Ni, Feng Miao, Jun He     E-mail:;;

Cite this article: 

Yuanfang Yu(于远方), Feng Miao(缪峰), Jun He(何军), Zhenhua Ni(倪振华) Photodetecting and light-emitting devices based on two-dimensional materials 2017 Chin. Phys. B 26 036801

[1] Mak K F, Ju L, Wang F and Heinz T F 2012 Solid State Commun. 152 1341
[2] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[3] Xu X D, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[4] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[5] Geim A K 2009 Science 324 1530
[6] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[7] Sun Z P, Martinez A and Wang F 2016 Nat. Photon. 10 227
[8] Du Y L, Ouyang C Y, Shi S Q and Lei M S 2010 J. Appl. Phys. 107 093718
[9] Akahama Y, Endo S and Narita S 1983 J. Phys. Soc. Jpn. 52 2148
[10] Das S, Zhang W, Demarteau M, Hoffmann A, Dubey M and Roelofs A 2014 Nano Lett. 14 5733
[11] Takao Y and Morita A 1981 Physica B+C 105 93
[12] Nichols P L, Liu Z, Yin L, Turkdogan S, Fan F and Ning C Z 2015 Nano Lett. 15 909
[13] Wen Y, Wang Q S, Yin L, Liu Q, Wang F, Wang F M, Wang Z X, Liu K L, Xu K, Huang Y, Shifa T A, Jiang C, Xiong J and He J 2016 Adv. Mater. 28 8051
[14] Dziawa P, Kowalski B J, Dybko K, Buczko R, Szczerbakow A, Szot M, Lusakowska E, Balasubramanian T, Wojek B M, Berntsen M H, Tjernberg O and Story T 2012 Nat. Mater. 11 1023
[15] Dixon J R and Hoff G F 1971 Phys. Rev. B 3 4299
[16] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
[17] Farmer D B, Golizadeh-Mojarad R, Perebeinos V, Lin Y M, Tulevski G S, Tsang J C and Avouris P 2009 Nano Lett. 9 388
[18] Peters E C, Lee E J H, Burghard M and Kern K 2010 Appl. Phys. Lett. 97 193102
[19] Lemme M C, Koppens F H L, Falk A L, Rudner M S, Park H, Levitov L S, and Marcus C M 2011 Nano Lett. 11 4134
[20] Mueller T, Xia F N and Avouris P 2010 Nat. Photon. 4 297
[21] Rogalski A, Antoszewski J and Faraone L 2009 J. Appl. Phys. 105 091101
[22] Engel M, Steiner M and Avouris P 2014 Nano Lett. 14 6414
[23] Chen C J, Choi K K, Chang W H and Tsui D C 1998 Appl. Phys. Lett. 72 7
[24] An X H, Liu F Z, Jung Y J and Kar S 2013 Nano Lett. 13 909
[25] Tielrooij K J, Piatkowski L, Massicotte M, Woessner A, Ma Q, Lee Y, Myhro K S, Lau C N, Jarillo-Herrero P, vanHulst N F and Koppens F H L 2015 Nat. Nanotechnol. 10 437
[26] Wang W H, Nan H Y, Liu Q, Liang Z, Yu Z H, Liu F Y, Hu W D, Zhang W, Wang X R and Ni Z H 2015 Appl. Phys. Lett. 106 021121
[27] Gabor N M, Song J C W, Ma Q, Nair N L, Taychatanapat T, Watanabe K, Taniguchi T, Levitov L S and Jarillo-Herrero P 2011 Science 334 648
[28] Yan J, Kim M, Elle J A, Sushkov A B, Jenkins G S, Milchberg H M, Fuhrer M S and Drew H D 2012 Nat. Nanotechnol. 7 472
[29] Klekachev A V, Cantoro M, van der Veen M H, Stesmans A L, Heyns M M and Gendt S D 2011 Physica E 43 1046
[30] Guo W H, Xu S G, Wu Z F, Wang N, Loy M M T and Du S W 2013 Small 9 3031
[31] Qiao H, Yuan J, Xu Z Q, Chen C Y, Lin S H, Wang Y S, Song J C, Liu Y, Khan Q, Hoh H Y, Pan C X, Li S J and Bao Q L 2015 ACS Nano 9 1886
[32] Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, Arquer F P G D, Gatti F and Koppens F H L 2012 Nat. Nanotechnol. 7 363
[33] Haider G, Roy P, Chiang C W, Tan W C, Liou Y R, Chang H T, Liang C T, Shih W H and Chen Y F 2016 Adv. Funct. Mater. 26 620
[34] Chen Z F, Cheng Z Z, Wang J Q, Wan X, Shu C, Tsang H K, Ho H P and Xu J B 2015 Adv. Opt. Mater. 3 1207
[35] Liu F Z and Kar S 2014 ACS Nano 8 10270
[36] Zeng L H, Wang M Z, Hu H, Nie B, Yu Y Q, Wu C Y, Wang L, Hu J G, Xie C, Liang F X and Luo L B 2013 ACS Appl. Mater. Interfaces 5 9362
[37] Guo X T, Wang W H, Nan H Y, Yu Y F, Jiang J, Zhao W W, Li J H, Zafar Z, Xiang N, Ni Z H, Hu W D, You Y M and Ni Z H 2016 Optica 3 1066
[38] Schroder D K 2001 Meas. Sci. Technol. 12 R16
[39] Cuevas A and Macdonald D 2004 Sol. Energ. 76 255
[40] Liu X L, Luo X G, Nan H Y, Guo H, Wang P, Zhang L L, Zhou M M, Yang Z Y, Shi Y, Hu W D, Ni Z H, Qiu T, Yu Z F, Xu J B and Wang X R 2016 Adv. Mater. 28 5200
[41] Lee Y, Kwon J, Hwang E, Ra C H, Yoo W J, Ahn J H, Park J H and Cho J H 2015 Adv. Mater. 27 41
[42] Huisman, E H, Shulga A G, Zomer P J, Tombros N, Bartesaghi D, Bisri S Z, Loi M A, Koster L J A and van Wees B J 2015 ACS Appl. Mater. Interfaces 7 11083
[43] Tan W C, Shih W H and Chen Y F 2014 Adv. Funct. Mater. 24 6818
[44] Kim S J, Song W, Kim S, Kang M A, Myung S, Lee S S, Lim J and An K S 2016 Nanotechnology 27 075709
[45] Munoz E, Monroy E, Garrido J A, I. Izpura I, Sánchez F J, Sánchez-García M A, Calleja E, Beaumont B and Gibart P 1997 Appl. Phys. Lett. 71 870
[46] Xie F, Lu H, Xiu X Q, Chen D J, Han P, Zhang R and Zheng Y D 2011 Solid-State Electron. 57 39
[47] Perera A G U, Yuan H X, Choe J W and Francombe M H 1995 SPIE's 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics, April 17, 1995, Orlando, United States, p. 76
[48] Itkis M E, Niyogi S, Meng M E, Hamon M A, Hu H and Haddon R C 2002 Nano Lett. 2 155
[49] Lu R T, Christianson C, Weintrub B and Wu J Z 2013 ACS Appl. Mater. Interfaces 5 11703
[50] Liu Y D, Wang F Q, Wang X M, Wang X Z, Flahaut E, Liu X L, Li Y, Wang X R, Xu Y B, Shi Y and Zhang R 2015 Nat. Commun. 6 8589
[51] Xiu F X and Zhao T T 2013 Chin. Phys. B 22 96104
[52] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[53] Liu C H, Chang Y C, Norris T B and Zhong Z H 2014 Nat. Nanotechnol. 9 273
[54] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[55] Lu J P, Liu H W, Tok E S and Sow C H 2016 Chem. Soc. Rev. 45 2494
[56] Lu J P, Carvalho A, Liu H W, Lim S X, Neto A H C and Sow C H 2016 Angew. Chem. Int. Ed. 55 11945
[57] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[58] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[59] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
[60] Wang H N, Zhang C J, Chan W M, Tiwari S and Rana F 2015 Nat. Commun. 6 8831
[61] Feng Y Q, Zhou W, Wang Y J, Zhou J, Liu E F, Fu Y J, Ni Z H, Wu X L, Yuan H T, Miao F, Wang B G, Wan X G and Xing D Y 2015 Phys. Rev. B 92 054110
[62] Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, Zhou J, Huang Y S, Ho C H, Yan J Y, Ogletree D F, Aloni S, Ji J, Li S S, Li J B, Peeters F M and Wu J Q 2014 Nat. Commun. 5 3252
[63] Kim S, Konar A, Hwang W S, Lee J H, Lee J H, Yang J, Jung C, Kim H, Yoo J B, Choi J Y, Jin Y W, Lee S Y, Jena D, Choi W and Kim K 2012 Nat. Commun. 3 1011
[64] Liu E F, Long M S, Zeng J W, et al. 2016 Adv. Funct. Mater. 26 1938
[65] Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W and Chu J H 2015 Adv. Mater. 27 6575
[66] Gong F, Luo W J, Wang J L, Wang P, Fang H H, Zheng D S, Guo N, Wang J L, Luo M, Ho J C, Chen X S, Lu W, Liao L and Hu W D 2016 Adv. Funct. Mater. 26 6084
[67] Xia F N, Wang H and Jia Y C 2014 Nat. Commun. 5 4458
[68] Lu J P, Carvalho A, Wu J, Liu H W, Tok E S, Neto A H C, Özyilmaz B and Sow C H 2016 Adv. Mater. 28 4090
[69] Lu J P, Yang J, Carvalho A, Liu H W, Lu Y R and Sow C H 2016 Acc. Chem. Res. 49 1806
[70] Huang M Q, Wang M L, Chen C, Ma Z W, Li X F, Han J B and Wu Y Q 2016 Adv. Mater. 28 3481
[71] Yuan H T, Liu X G, Afshinmanesh F, Li W, Xu G, Sun J, Lian B, Curto A G, Ye G J, Hikita Y, Shen Z X, Zhang S C, Chen X H, Brongersma M, Hwang H Y and Yi Cui 2015 Nat. Nanotechnol. 10 707
[72] Cho J H, Lee J, Xia Y, Kim B, He Y Y, Renn M J, Lodge T P and Frisbie C D 2008 Nat. Mater. 7 900
[73] Youngblood N, Chen C, Koester S J and Li M 2015 Nat. Photon. 9 247
[74] Zhang W J, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H, Chou M Y and Li L J 2014 Sci. Rep. 4 3826
[75] Yu W J, Liu Y, Zhou H L, Yin A X, Li Z, Huang Y and Duan X F 2013 Nat. Nanotechnol. 8 952
[76] Lee C H, Lee G H, Van Der Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J and Kim P 2014 Nat. Nanotechnol. 9 676
[77] Long M S, Liu E F, Wang P, et al. 2016 Nano Lett. 16 2254
[78] Tan C L and Zhang H 2015 Nat. Commun. 6 7873
[79] Hsieh T H, Lin H, Liu J W, Duan W H, Bansil A and Fu L 2012 Nat. Commun. 3 982
[80] Tanaka Y, Ren Z, Sato T, Nakayama K, Souma S, Takahashi T, Segawa K and Ando Y 2012 Nat. Phys. 8 800
[81] Xu S Y, Liu C, Alidoust N, et al. 2012 Nat. Commun. 3 1192
[82] Wang Q S, Xu K, Wang Z X, Wang F, Huang Y, Safdar M, Zhan X Y, Wang F M, Cheng Z Z and He J 2015 Nano Lett. 15 1183
[83] Wang Q S, Wen Y, Yao F R, Huang Y, Wang Z X, Li M L, Zhan X Y, Xu K, Wang F M, Wang F, Li J, Liu K H, Jiang C, Liu F Q and He J 2015 Small 11 5388
[84] Sun Z Q, Liao T, Dou Y H, Hwang S M, Park M S, Jiang L, Kim J H and Dou S X 2014 Nat. Commun. 5 3813
[85] Mak K F, He K L, Lee C, Lee G H, Hone J, Heinz T F and Shan J 2013 Nat. Mater. 12 207
[86] Fogler M M, Butov L V and Novoselov K S 2014 Nat. Commun. 5 4555
[87] Shi H Y, Yan R S, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G and Huang L B 2013 ACS Nano 7 1072
[88] Mak K F and Shan J 2016 Nat. Photon. 10 216
[89] Tongay S, Suh J, Ataca C, Fan W, Luce A, Kang J S, Liu J, Ko C, Raghunathanan R, Zhou J, Ogletree F, Li J B, Grossman J C and Wu J Q 2013 Sci. Rep. 3 2657
[90] Baugher B W H, Churchill H O H, Yang Y F and Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 262
[91] Pospischil A, Furchi M M and Mueller T 2014 Nat. Nanotechnol. 9 257
[92] Ross J S, Klement P, Jones A M, Ghimire N J, Yan J Q, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K, Yao W, Cobden D H and Xu X D 2014 Nat. Nanotechnol. 9 268
[93] Jo S, Ubrig N, Berger H, Kuzmenko A B and Morpurgo A F 2014 Nano Lett. 14 2019
[94] Zhang Y J, Oka T, Suzuki R, Ye J T and Iwasa Y 2014 Science 344 725
[95] Ye Y, Ye Z L, Gharghi M, Zhu H Y, Zhao M, Wang Y, Yin X B and Zhang X 2014 Appl. Phys. Lett. 104 193508
[96] Yang W H, Shang J Z, Wang J P, Shen X N, Cao B C, Peimyoo N, Zou C J, Chen Y, Wang Y L, Cong C X, Huang W and Yu T 2016 Nano Lett. 16 1560
[97] Cheng R, Li D H, Zhou H L, Wang C, Yin A X, Jiang S, Liu Y, Chen Y, Huang Y and Duan X F 2014 Nano Lett. 14 5590
[98] Withers F, Pozo-Zamudio O D, Mishchenko A, Rooney A P, Gholinia A, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Tartakovskii A I and Novoselov K S 2015 Nat. Mater. 14 301
[99] Politi A, Matthews J C F and O'Brien J L 2009 Science 325 1221
[100] He Y M, Clark G, Schaibley J R, He Y, Chen M C, Wei Y J, Ding X, Zhang Q, Yao W, Xu X D, Lu C Y and Pan J W 2015 Nat. Nanotechnol. 10 497
[101] Koperski, Nogajewski M K, Arora A, Cherkez V, Mallet P, Veuillen J Y, Marcus J, Kossacki P and Potemski M 2015 Nat. Nanotechnol. 10 503
[102] Chakraborty C, Kinnischtzke L, Goodfellow K M, Beams R and Vamivakas A N 2015 Nat. Nanotechnol. 10 507
[103] Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A and Imamoğlu A 2015 Nat. Nanotechnol. 10 491
[104] Tran T T, Bray K, Ford M J, Toth M and Aharonovich I 2016 Nat. Nanotechnol. 11 37
[1] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[2] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[3] Tuning magnetic anisotropy by interfacial engineering in La2/3Sr1/3Co1-xMnxO2.5+δ/La2/3Sr1/3MnO3/La2/3Sr1/3Co1-xMnxO2.5+δ trilayers
Hai-Lin Huang(黄海林), Liang Zhu(朱亮), Hui Zhang(张慧), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Jing-Hua Song(宋京华), Xiaobing Chen(陈晓冰), Yuan-Sha Chen(陈沅沙), Jian-Wang Cai(蔡建旺), Xue-Dong Bai(白雪冬), Feng-Xia Hu(胡凤霞), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 097402.
[4] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[5] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[6] Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures
Sheng Hu(胡晟), Ling Yang(杨凌), Min-Han Mi(宓珉瀚), Bin Hou(侯斌), Sheng Liu(刘晟), Meng Zhang(张濛), Mei Wu(武玫), Qing Zhu(朱青), Sheng Wu(武盛), Yang Lu(卢阳), Jie-Jie Zhu(祝杰杰), Xiao-Wei Zhou(周小伟), Ling Lv(吕玲), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087305.
[7] Improvement of valley splitting and valley injection efficiency for graphene/ferromagnet heterostructure
Longxiang Xu(徐龙翔), Wengang Lu(吕文刚), Chen Hu(胡晨), Qixun Guo(郭奇勋), Shuai Shang(尚帅), Xiulan Xu(徐秀兰), Guanghua Yu(于广华), Yu Yan(岩雨), Lihua Wang(王立华), Jiao Teng(滕蛟). Chin. Phys. B, 2020, 29(7): 077304.
[8] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[9] Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain
Hao Hong(洪浩), Yang Cheng(程阳), Chunchun Wu(吴春春), Chen Huang(黄琛), Can Liu(刘灿), Wentao Yu(于文韬), Xu Zhou(周旭), Chaojie Ma(马超杰), Jinhuan Wang(王金焕), Zhihong Zhang(张智宏), Yun Zhao(赵芸), Jie Xiong(熊杰), Kaihui Liu(刘开辉). Chin. Phys. B, 2020, 29(7): 077201.
[10] Effect of graphene grain boundaries on MoS2/graphene heterostructures
Yue Zhang(张悦), Xiangzhe Zhang(张祥喆), Chuyun Deng(邓楚芸), Qi Ge(葛奇), Junjie Huang(黄俊杰), Jie Lu(卢捷), Gaoxiang Lin(林高翔), Zekai Weng(翁泽锴), Xueao Zhang(张学骜), Weiwei Cai(蔡伟伟). Chin. Phys. B, 2020, 29(6): 067403.
[11] Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO
Chao-Jun Wang(王朝骏), Xun Yang(杨珣), Jin-Hao Zang(臧金浩), Yan-Cheng Chen(陈彦成), Chao-Nan Lin(林超男), Zhong-Xia Liu(刘忠侠), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(5): 058504.
[12] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
[13] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
[14] Electrostatic gating of solid-ion-conductor on InSe flakes and InSe/h-BN heterostructures
Zhang Zhou(周璋), Liangmei Wu(吴良妹), Jiancui Chen(陈建翠), Jiajun Ma(马佳俊), Yuan Huang(黄元), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(11): 118501.
[15] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
No Suggested Reading articles found!