Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 036601    DOI: 10.1088/1674-1056/26/3/036601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

General equation describing viscosity of metallic melts under horizontal magnetic field

Yipeng Xu(许亦鹏), Xiaolin Zhao(赵晓林), Tingliang Yan(颜廷亮)
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
Abstract  Viscosities of pure Ga, Ga80Ni20, and Ga80Cr20 metallic melts under a horizontal magnetic field were investigated by a torsional oscillation viscometer. A mathematical physical model was established to quantitatively describe the viscosity of single and binary metallic melts under a horizontal magnetic field. The relationship between the viscosity and the electrical resistivity under the horizontal magnetic field was studied, which can be described as ηB=η+(2H)/(πΩ)B2 (ηB is the viscosity under the horizontal magnetic field, η is the viscosity without the magnetic field, H is the height of the sample, Ω is the electrical resistivity, and B is the intensity of magnetic field). The viscosity under the horizontal magnetic field is proportional to the square of the intensity of the magnetic field, which is in very good agreement with the experimental results. In addition, the proportionality coefficient of ηB and quadratic B, which is related to the electrical resistivity, conforms to the law established that increasing the temperature of the completely mixed melts is accompanied by an increase of the electrical resistivity. We can predict the viscosity of metallic melts under magnetic field by measuring the electrical resistivity based on our equation, and vice versa. This discovery is important for understanding condensed-matter physics under external magnetic field.
Keywords:  viscosity      horizontal magnetic field      metallic melts      electrical resistivity  
Received:  06 May 2016      Revised:  20 December 2016      Accepted manuscript online: 
PACS:  66.20.Ej (Studies of viscosity and rheological properties of specific liquids)  
  64.30.Ef (Equations of state of pure metals and alloys)  
  75.20.En (Metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51371107).
Corresponding Authors:  Yipeng Xu     E-mail:  1244470102@qq.com

Cite this article: 

Yipeng Xu(许亦鹏), Xiaolin Zhao(赵晓林), Tingliang Yan(颜廷亮) General equation describing viscosity of metallic melts under horizontal magnetic field 2017 Chin. Phys. B 26 036601

[1] Wang K L, Jiang K, Chung B, Ouchi T, Burke P, Boysen D, Bradwell D, Kim H, Muecke U and Sadoway D 2014 Nature 514 348
[2] Fassler A and Majidi C 2015 Adv. Mater. 27 1928
[3] Sheng L, Zhang J and Liu J 2014 Adv. Mater. 26 6036
[4] Mi G B and Li P J 2011 Acta. Phys. Sin. 60 046601 (in Chinese)
[5] Zhao X L, Bian X F, Bai Y W and Li X X 2012 J. Appl. Phys. 111 103514
[6] Li X L, Bian X F and Hu L N 2010 Phys. Lett. 374 3784
[7] Xiao L and Wei X 2017 Mater. Struct. 50 22
[8] Lu Y Z, Huang Y J, Shen J, Lu X, Qin Z X and Zhang Z H 2014 J. Non-Cryst. Solids. 403 62
[9] Mudry S, Korolyshyn A, Vus V and Yakymovych A 2013 J. Mol. Liq. 179 94
[10] Guo F X, Tian Y, Qin J Y, Xu R F and Zhang Y 2013 J. Mater. Sci. 48 4438
[11] Guo H Z, Bai J Y, Kuo C C and Fu S L 2011 Metall. Mater. Trans. B 42B 261
[12] Assael M J, Mihailidou E K, Brillo J, Stankus S V, Wu J T and Wakeham W A 2012 J. Phys. Chem. Ref. Data 41 033103
[13] Zhao Y and Hou X X 2015 Chin. Phys. B 24 096601
[14] Marc J A, Ivi J A, Juergen B, Sergei V S, Wu J T and William A W 2012 J. Phys. Chem. Ref. Data 41 033101
[15] Wang X J and Li X F 2009 Chin. Phys. Lett. 26 056601
[16] Tao R and Tang H 2014 Fuel 118 69
[17] Fusi L, Farina Aand Rosso F 2015 Int. J. Eng. Sci. 87 110
[18] Ram P, Bhandari A and Sharma K 2010 J. Magn. Magn. Mater. 322 3476
[19] Lang S, Botan V, Oettel M, Hajnal D, Franosch T and Schilling R 2010 Phys. Rev.Lett. 105 125701
[20] Gaunt P 1986 J. Appl. Phys. 59 4129
[21] Zhang K, Bian X F, Li Y M, Liu Y, Yang C C and Zhao X L 2015 Phys. Lett. 379 1464
[22] Wang L S, Shen J, Shang Z and Fu H Z 2013 J. Cryst. Growth. 375 32
[23] Kakimot Ko, Eguchi M and Ozoe H 1997 J. Cryst. Growth. 180 442
[24] Li X, Fautrelle Y, Gagnoud A, Du D, Wang J, Ren Z, Nguyen-Thi H and Mangelinck-Noel N 2014 Acta. Mater. 64 367
[25] Xuan W D, Ren Z M and Li C J 2015 J. Alloy. Compd. 620 10
[26] Liu T, Wang Q, Gao A, . Zhang H W and He J C 2011 J. Alloy. Compd. 509 5822
[27] Sun C J, Geng H R, Zhang N, Teng X Y and Ji L L 2008 Mater. Lett. 62 73
[28] Mao T, Bian X F, Morioka S, Wu Y Q, Li X L and Lv X Q 2007 Phys. Lett. 366 155
[29] Yang J Y, Bian X F, Yang C C, Bai Y W, Li M M and Zhang K 2013 Physica B 415 18
[30] Zhang K, Tian X F, Bian X F Li Y M and Liu Y 2015 J. Phys.:Condens Matter 27 235104
[31] Bian X F, Zhao X L, Wu Y Q and Guo K 2013 J. Appl. Phys. 114 193503
[32] Emadi D, Gruzleski J E and Toguri J M 1993 Metall. Trans. B 24B 1055
[33] Liu R X, Jia P, Li M Y, Geng H R and Leng J F 2015 Mater. Lett. 145 108
[1] High-precision nuclear magnetic resonance probe suitable for in situ studies of high-temperature metallic melts
Ao Li(李傲), Wei Xu(许巍), Xiao Chen(陈霄), Bing-Nan Yao(姚冰楠), Jun-Tao Huo(霍军涛), Jun-Qiang Wang(王军强), and Run-Wei Li(李润伟). Chin. Phys. B, 2022, 31(4): 040706.
[2] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[3] A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊). Chin. Phys. B, 2021, 30(4): 044702.
[4] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[5] Abnormal breakdown of Stokes-Einstein relation in liquid aluminium
Chen-Hui Li (李晨辉), Xiu-Jun Han(韩秀君), Ying-Wei Luan(栾英伟), Jian-Guo Li(李建国). Chin. Phys. B, 2017, 26(1): 016102.
[6] Generalized model for laser-induced surface structure in metallic glass
Lin-Mao Ye(叶林茂), Zhen-Wei Wu(武振伟), Kai-Xin Liu(刘凯欣), Xiu-Zhang Tang(汤秀章), Xiang-Ming Xiong (熊向明). Chin. Phys. B, 2016, 25(6): 068104.
[7] Thermodynamic and transport properties of spiro-(1,1')-bipyrrolidinium tetrafluoroborate and acetonitrile mixtures: A molecular dynamics study
Qing-Yin Zhang(张庆印), Peng Xie(谢鹏), Xin Wang(王欣), Xue-Wen Yu(于学文), Zhi-Qiang Shi(时志强), Shi-Huai Zhao(赵世怀). Chin. Phys. B, 2016, 25(6): 066102.
[8] A new traffic model with a lane-changing viscosity term
Ko Hung-Tang (柯鸿堂), Liu Xiao-He (刘小禾), Guo Ming-Min (郭明旻), Wu Zheng (吴正). Chin. Phys. B, 2015, 24(9): 098901.
[9] Viscosities and their correlations with structures of Cu-Ag melts
Zhao Yan (赵岩), Hou Xiao-Xia (侯晓霞). Chin. Phys. B, 2015, 24(9): 096601.
[10] Relationship between Voronoi entropy and the viscosity of Zr36Cu64 alloy melt based on molecular dynamics
Gao Wei (高伟), Feng Shi-Dong (冯士东), Zhang Shi-Liang (张世良), Qi Li (戚力), Liu Ri-Ping (刘日平). Chin. Phys. B, 2015, 24(12): 126102.
[11] Group solution for an unsteady non-Newtonian Hiemenz flow with variable fluid properties and suction/injection
H. M. El-Hawary, Mostafa A. A. Mahmoud, Reda G. Abdel-Rahman, Abeer S. Elfeshawey. Chin. Phys. B, 2014, 23(9): 090203.
[12] Shear viscosity of aluminum studied by shock compression considering elasto-plastic effects
Ma Xiao-Juan (马小娟), Hao Bin-Bin (郝斌斌), Ma Hai-Xia (马海霞), Liu Fu-Sheng (刘福生). Chin. Phys. B, 2014, 23(9): 096204.
[13] Sputtering pressure influence on growth morphology, surface roughness, and electrical resistivity for strong anisotropy beryllium film
Luo Bing-Chi (罗炳池), Li Kai (李恺), Kang Xiao-Li (康晓丽), Zhang Ji-Qiang (张吉强), He Yu-Dan (何玉丹), Luo Jiang-Shan (罗江山), Wu Wei-Dong (吴卫东), Tang Yong-Jian (唐永建). Chin. Phys. B, 2014, 23(6): 066804.
[14] Molecular dynamics simulation of self-diffusion coefficients for liquid metals
Ju Yuan-Yuan (巨圆圆), Zhang Qing-Ming (张庆明), Gong Zi-Zheng (龚自正), Ji Guang-Fu (姬广富). Chin. Phys. B, 2013, 22(8): 083101.
[15] A fiber-array probe technique for measuring the viscosity of a substance under shock compression
Feng Li-Peng (冯立鹏), Liu Fu-Sheng (刘福生), Ma Xiao-Juan (马小娟), Zhao Bei-Jing (赵北京), Zhang Ning-Chao (张宁超), Wang Wen-Peng (王文鹏), Hao Bin-Bin (郝斌斌). Chin. Phys. B, 2013, 22(10): 108301.
No Suggested Reading articles found!