Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 027401    DOI: 10.1088/1674-1056/26/2/027401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermal stability and electrical transport properties of Ge/Sn-codoped single crystalline β-Zn4Sb3 prepared by the Sn-flux method

Hong-xia Liu(刘虹霞)1, Shu-ping Deng(邓书平)1, De-cong Li(李德聪)2, Lan-xian Shen(申兰先)1, Shu-kang Deng(邓书康)1
1 Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Normal University, Kunming 650500, China;
2 Photoelectric Engineering College, Yunnan Open University, Kunming 650500, China
Abstract  

This study prepares a group of single crystalline β-Zn4Sb3 with Ge and Sn codoped by the Sn-flux method according to the nominal stoichiometric ratios of Zn4.4Sb3GexSn3 (x=0-0.15). The prepared samples possess a metallic luster surface with perfect appearance and large crystal sizes. The microscopic cracks or defects are invisible in the samples from the back-scattered electron image. Except for the heavily Ge-doped sample of x=0.15, all the samples are single phase with space group R3c. The thermal analysis results show that the samples doped with Ge exhibit an excellent thermal stability. Compared with the polycrystalline Ge-substituted β-Zn4Sb3, the present single crystals have higher carrier mobility, and hence the electrical conductivity is improved, which reaches 7.48×104 S·m-1 at room temperature for the x=0.1 sample. The change of Ge and Sn contents does not improve the Seebeck coefficient significantly. Benefiting from the increased electrical conductivity, the sample with x=0.075 gets the highest power factor of 1.45×10-3 W·m-1·K-2 at 543 K.

Keywords:  thermoelectric materials      β-Zn4Sb3      flux method      electrical transport properties  
Received:  15 September 2016      Revised:  23 November 2016      Published:  05 February 2017
PACS:  74.25.fg (Thermoelectric effects)  
  74.25.fc (Electric and thermal conductivity)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51262032).

Corresponding Authors:  Shu-kang Deng     E-mail:  skdeng@126.com

Cite this article: 

Hong-xia Liu(刘虹霞), Shu-ping Deng(邓书平), De-cong Li(李德聪), Lan-xian Shen(申兰先), Shu-kang Deng(邓书康) Thermal stability and electrical transport properties of Ge/Sn-codoped single crystalline β-Zn4Sb3 prepared by the Sn-flux method 2017 Chin. Phys. B 26 027401

[1] Lin J, Li X, Qiao G, Wang Z, Carrete J, Ren Y, Ma L, Fei Y, Yang B, Lei L and Li J 2013 J. Am. Chem. Soc. 136 1497
[2] Meng D Y, Shen L X, Shai X X, Dong G J and Deng S K 2013 Acta Phys. Sin. 62 247401 (in Chinese)
[3] Zhang Y, Wu L H, Zengli J K, Liu Y F, Zhang J Y, Xing J J and Luo J 2016 Acta Phys. Sin. 65 107201 (in Chinese)
[4] Slack G A 1995 in CRC handbook of thermoelectrics, ed. Rowe D M (Boca Raton, FL: CRC Press) p. 407
[5] Wang J S, Cheng F, Liu H X, Li D C, Shen L X and Deng S K 2016 Chin. Phys. B 25 067402
[6] Toberer E S, Rauwel P, Gariel S, Tafto J and Snyder G J 2010 J. Mater. Chem. 20 9877
[7] Snyder G J, Christensen M, Nishibori E, Caillat T and Iversen B B 2004 Nat. Mater. 3 458
[8] Mozharivskyj Y, Janssen Y, Harringa J L, Kracher A, Tsokol O A and Miller G J 2006 Chem. Mater. 18 822
[9] Ur SC, Kim IH and Nash P 2004 Mater. Lett. 58 2132
[10] Caillat T, Fleurial J P and Borshchevsky A 1997 J. Phys. Chem. Solids 58 1119
[11] Tan G, Wang S, Li H, Yan Y and Tang X 2012 J. Solid State Chem. 187 316
[12] Nong N Van, Pryds N, Linderoth S and Ohtaki M 2011 Adv. Mater. 23 2484
[13] Shai X, Deng S, Shen L, Meng D, Li D, Zhang Y and Jiang X 2015 Phys. Status Solidi B 252 795
[14] Wang S Y, She X Y, Zheng G, Fu F, Li H and Tang X F 2012 J. Electron. Mater. 41 1091
[15] Koyanagi T, Hino K, Nagamoto Y, Yoshitake H and Kishimoto K 1997 IEEE XVI International Conference on Thermoelectrics 463
[16] Wang S, Fu F, She X, Zheng G, Li H and Tang X 2011 Intermetallics 19 1823
[17] Pedersen B L, Yin H, Birkedal H, Nygren M and Iversen B B 2010 Chem. Mater. 22 2375
[18] Qin X Y, Liu M, Pan L, Xin H X, Sun J H and Wang Q Q 2011 J. Appl. Phys. 109 033714
[19] Nakamoto G, Tajima Y and Kurisu M 2012 Intermetallics 23 163
[20] Pedersen B L, Birkedal H, Nygren M, Frederiksen P T and Iversen B B 2009 J. Appl. Phys. 105 382
[21] Wang S, Tan X, Tan G, She X, Liu W, Li H, Liu H and Tang X 2012 J. Mater. Chem. 22 13977
[22] Mozharivskyj Y, Janssen Y, Harringa J L, Kracher A, Tsokol A O and Miller G J 2006 Chem. Mater. 18 822
[23] Zhang L T, Tsutsui M, Ito K and Yamaguchi M 2003 J. Alloys Compd. 358 252
[24] Shai X, Deng S, Meng D, Shen L and Li D 2014 Physica B: Condens. Matter 452 148
[25] Liu H, Deng S, Li D, Shen L, Cheng F, Wang J and Deng S 2016 Physica B: Condens. Matter 500 9
[26] Okamura C, Ueda T and Hasezaki K 2010 Mater. Trans. 51 152
[27] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[1] Band engineering and precipitation enhance thermoelectric performance of SnTe with Zn-doping
Zhiyu Chen(陈志禹), Ruifeng Wang(王瑞峰), Guoyu Wang(王国玉), Xiaoyuan Zhou(周小元), Zhengshang Wang(王正上), Cong Yin(尹聪), Qing Hu(胡庆), Binqiang Zhou(周斌强), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(4): 047202.
[2] Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels
Ke-Xian Wang(王柯鲜), Jun Wang(王俊), Yan Li(李艳), Tao Zou(邹涛), Xiao-Huan Wang(王晓欢), Jian-Bo Li(李建波), Zheng Cao(曹正), Wen-Jing Shi(师文静), Xinba Yaer(新巴雅尔). Chin. Phys. B, 2018, 27(4): 048401.
[3] Effect of Nb doping on microstructures and thermoelectric properties of SrTiO3 ceramics
Da-Quan Liu(刘达权), Yu-Wei Zhang(张玉伟), Hui-Jun Kang(康慧君), Jin-Ling Li(李金玲), Xiong Yang(杨雄), Tong-Min Wang(王同敏). Chin. Phys. B, 2018, 27(4): 047205.
[4] Nanoscale thermal transport: Theoretical method and application
Yu-Jia Zeng(曾育佳), Yue-Yang Liu(刘岳阳), Wu-Xing Zhou(周五星), Ke-Qiu Chen(陈克求). Chin. Phys. B, 2018, 27(3): 036304.
[5] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
[6] Improved thermoelectric performance in p-type Bi0.48Sb1.52Te3 bulk material by adding MnSb2Se4
Binglei Cao(曹丙垒), Jikang Jian(简基康), Binghui Ge(葛炳辉), Shanming Li(李善明), Hao Wang(王浩), Jiao Liu(刘骄), Huaizhou Zhao(赵怀周). Chin. Phys. B, 2017, 26(1): 017202.
[7] Structural stabilities and electrical properties of Ba8Ga16-xCuxSn30 single crystals under high temperatures
Jin-Song Wang(王劲松), Feng Cheng(程峰), Hong-Xia Liu(刘红霞), De-Cong Li(李德聪), Lan-Xian Shen(申兰先), Shu-Kang Deng(邓书康). Chin. Phys. B, 2016, 25(6): 067402.
[8] Improved thermoelectric property of cation-substituted CaMnO3
Pradeep Kumar, Subhash C. Kashyap, Vijay Kumar Sharma, H. C. Gupta. Chin. Phys. B, 2015, 24(9): 098101.
[9] Quick preparation and thermal transport properties of nanostructured β-FeSi2 bulk material
Li Han, Tang Xin-Feng, Cao Wei-Qiang, Zhang Qing-Jie. Chin. Phys. B, 2009, 18(1): 287-292.
No Suggested Reading articles found!