Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 020304    DOI: 10.1088/1674-1056/26/2/020304
GENERAL Prev   Next  

Probabilistic direct counterfactual quantum communication

Sheng Zhang(张盛)
Department of Electronic Technology, China Maritime Police Academy, Ningbo 315801, China
Abstract  It is striking that the quantum Zeno effect can be used to launch a direct counterfactual communication between two spatially separated parties, Alice and Bob. So far, existing protocols of this type only provide a deterministic counterfactual communication service. However, this counterfactuality should be payed at a price. Firstly, the transmission time is much longer than a classical transmission costs. Secondly, the chained-cycle structure makes them more sensitive to channel noises. Here, we extend the idea of counterfactual communication, and present a probabilistic-counterfactual quantum communication protocol, which is proved to have advantages over the deterministic ones. Moreover, the presented protocol could evolve to a deterministic one solely by adjusting the parameters of the beam splitters.
Keywords:  quantum communication      quantum cryptography      optical implementation of quantum information processing  
Received:  31 May 2016      Revised:  03 November 2016      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61300203).
Corresponding Authors:  Sheng Zhang     E-mail:  huoxingren112@163.com

Cite this article: 

Sheng Zhang(张盛) Probabilistic direct counterfactual quantum communication 2017 Chin. Phys. B 26 020304

[1] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[2] Mattle K and Weinfurter H and Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[3] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[4] Boschi D, Branca S, De Martini F, Hardy L and Popescu S 1998 Phys. Rev. Lett. 80 1121
[5] Noh T G 2009 Phys. Rev. Lett. 103 230501
[6] Sun Y and Wen Q Y 2010 Phys. Rev. A 82 052318
[7] Bennett C H, Brassard G, et al. 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, December 9-12, 1984, Bangalore, India, p. 175
[8] Elitzur A C and Vaidman L 1993 Found. Phys. 23 987
[9] Kwiat P G et al. 1999 Phys. Rev. Lett. 83 4725
[10] Noh T G and Hong C K 1999 Quantum Semiclass. Opt. 10 637
[11] Zhang S and Wang J and Tang C J 2013 Commun. Theor. Phys. 10 637
[12] Yin Z Q, Li H W, Chen W, Han Z F and Guo G C 2010 Phys. Rev. A 82 042335
[13] Zhang S, Wang J and Tang C J 2012 Chin. Phys. B 21 060303
[14] Zhang S, Wang J and Tang C J 2012 Europhys. Lett. 98 30012
[15] Liu Y, Ju L, Liang X L, Tang S B, Tu G L, Zhou S, Peng L, Chen C Z, Chen K, Chen T Y, et al. 2012 Phys. Rev. Lett. 109 030501
[16] Brida G, Cavanna A, Degiovanni I P, Genovese M and Traina P 2012 Laser Phys. Lett. 9 247
[17] Salih H, Li Z H, Al-Amri M and Zubairy M S 2013 Phys. Rev. Lett. 110 170502
[18] Vaidman L 2007 Phys. Rev. Lett. 98 160403
[19] Salih H 2014 Phys. Rev. A 90 012333
[20] Shenoy A, Srikanth R and Srinivas T 2014 Phys. Rev. A 89 052307
[21] Shenoy H A, Srikanth R and Srinivas T 2013 Europhysics Lett. 103 60008
[22] Guo Q, Cheng L Y, Chen L, Wang H F and Zhang S 2014 arXiv: 1404.6401 [quant-ph]
[23] Greiner W 2001 Quantum Mechanics: An introduction (Berlin: Springer)
[24] Hosten O, Rakher M T, Barreiro J T, Peters N A and Kwiat P G 2006 Nature 439 949
[25] Mitchison G Jozsa R 2007 arXiv: quant-ph/0606092v3
[26] Vaidman L 2016 arXiv: 1511.006615v2 [quant-ph]
[27] Vaidman L 2016 arXiv: 1605.02181v1 [quant-ph]
[28] Marlow A R 1978 Mathematical Foundations of Quantum Theory. (New York: Academic Press) pp. 36
[1] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[2] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[3] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[4] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[5] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
[6] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[7] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[8] Coherent attacks on a practical quantum oblivious transfer protocol
Guang-Ping He(何广平). Chin. Phys. B, 2018, 27(10): 100308.
[9] Cancelable remote quantum fingerprint templates protection scheme
Qin Liao(廖骎), Ying Guo(郭迎), Duan Huang(黄端). Chin. Phys. B, 2017, 26(9): 090302.
[10] Multi-copy entanglement purification with practical spontaneous parametric down conversion sources
Shuai-Shuai Zhang(张帅帅), Qi Shu(祁舒), Lan Zhou(周澜), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(6): 060307.
[11] Continuous variable quantum key distribution
Yong-Min Li(李永民), Xu-Yang Wang(王旭阳), Zeng-Liang Bai(白增亮), Wen-Yuan Liu(刘文元), Shen-Shen Yang(杨申申), Kun-Chi Peng(彭堃墀). Chin. Phys. B, 2017, 26(4): 040303.
[12] Two-step quantum secure direct communication scheme with frequency coding
Xue-Liang Zhao(赵学亮), Jun-Lin Li(李俊林), Peng-Hao Niu(牛鹏皓), Hong-Yang Ma(马鸿洋), Dong Ruan(阮东). Chin. Phys. B, 2017, 26(3): 030302.
[13] Optimal multi-photon entanglement concentration with the photonic Faraday rotation
Lan Zhou(周澜), Dan-Dan Wang(王丹丹), Xing-Fu Wang(王兴福), Shi-Pu Gu(顾世浦), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(2): 020302.
[14] Quantum dual signature scheme based on coherent states with entanglement swapping
Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎). Chin. Phys. B, 2016, 25(8): 080306.
[15] Anonymous voting for multi-dimensional CV quantum system
Rong-Hua Shi(施荣华), Yi Xiao(肖伊), Jin-Jing Shi(石金晶), Ying Guo(郭迎), Moon-Ho Lee. Chin. Phys. B, 2016, 25(6): 060301.
No Suggested Reading articles found!