Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 127303    DOI: 10.1088/1674-1056/26/12/127303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin-valley-dependent transport and giant tunneling magnetoresistance in silicene with periodic electromagnetic modulations

Yi-Man Liu(刘一曼)1, Huai-Hua Shao(邵怀华)2, Guang-Hui Zhou(周光辉)3, Hong-Guang Piao(朴红光)1, Li-Qing Pan(潘礼庆)1, Min Liu(刘敏)1
1. College of Science, China Three Gorges University, Yichang 443002, China;
2. School of Electrical Engineering, Liupanshui Normal University, Liupanshui 553004, China;
3. Department of Physics and Key Laboratory for Low-Dimensional Structures and Quantum Manipulation(Ministry of Education), Hunan Normal University, Changsha 410081, China
Abstract  

The transport property of electrons tunneling through arrays of magnetic and electric barriers is studied in silicene. In the tunneling transmission spectrum, the spin-valley-dependent filtered states can be achieved in an incident energy range which can be controlled by the electric gate voltage. For the parallel magnetization configuration, the transmission is asymmetric with respect to the incident angle θ, and electrons with a very large negative incident angle can always transmit in propagating modes for one of the spin-valley filtered states under a certain electromagnetic condition. But for the antiparallel configuration, the transmission is symmetric about θ and there is no such transmission channel. The difference of the transmission between the two configurations leads to a giant tunneling magnetoresistance (TMR) effect. The TMR can reach to 100% in a certain Fermi energy interval around the electrostatic potential. This energy interval can be adjusted significantly by the magnetic field and/or electric gate voltage. The results obtained may be useful for future valleytronic and spintronic applications, as well as magnetoresistance device based on silicene.

Keywords:  silicene      quantum transport      electromagnetic superlattice      giant tunneling magnetoresistance effect     
Received:  23 July 2017      Published:  05 December 2017
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.43.Qt (Magnetoresistance)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11547249, 51501102, and 11647157) and the Science Foundation for Excellent Youth Doctors of Three Gorges University, China (Grant No. KJ2014B076).

Corresponding Authors:  Min Liu     E-mail:  lmin@ctgu.edu.cn

Cite this article: 

Yi-Man Liu(刘一曼), Huai-Hua Shao(邵怀华), Guang-Hui Zhou(周光辉), Hong-Guang Piao(朴红光), Li-Qing Pan(潘礼庆), Min Liu(刘敏) Spin-valley-dependent transport and giant tunneling magnetoresistance in silicene with periodic electromagnetic modulations 2017 Chin. Phys. B 26 127303

[1] Takeda K and Shiraishi K 1994 Phys. Rev. B 50 14916
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[3] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
[4] Vogt P, Padova P D, Quaresima C, Avila J and Frantzeskakis E 2012 Phys. Rev. Lett. 108 155501
[5] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[6] Liu C C, Jiang H and Yao Y 2011 Phys. Rev. B 84 195430
[7] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[8] Ezawa M 2012 New J. Phys. 14 033003
[9] Yokoyama T 2013 Phys. Rev. B 87 241409
[10] Soodchomshom B 2014 J. Appl. Phys. 115 023706
[11] Wang R, Xu M S and Pi X D 2015 Chin. Phys. B 24 086807
[12] Wang Y Y, Quhe R G, Yu D P and Lü J 2015 Chin. Phys. B 24 087201
[13] Yao Y, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401(R)
[14] Drummond N D, Zólyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423
[15] Tahir M, Manchon A, Sabeeh K and Schwingenschlögl U 2013 Appl. Phys. Lett. 102 162412
[16] Kim Y, Choi K, and Ihm J 2014 Phys. Rev. B 89 085429
[17] Ezawa M 2013 Phys. Rev. Lett. 110 026603
[18] Kaloni T P, Singh N and Schwingenschló gl U 2014 Phys. Rev. B 89 035409
[19] Pan H, Li Z, Liu C C, Zhu G, Qiao Z and Yao Y 2014 Phys. Rev. Lett. 112 106802
[20] Bahram S and Mohsen Y 2017 Chin. Phys. B 26 017203
[21] Tabert C J and Nicol E J 2013 Phys. Rev. Lett. 110 197402
[22] Tahir M and Schwingenschló gl U 2013 Sci. Rep. 3 1075
[23] Shakouri K, Vasilopoulos P, Vargiamidis V and Peeters F M 2014 Phys. Rev. B 90 125444
[24] Cerchez M, Hugger S and Heinzel T 2007 Phys. Rev. B 75 035341
[25] Hong J, Joo S, Kim T S, Rhie K, Kim K H, Kim S U, Lee B C and Shin K H 2007 Appl. Phys. Lett. 90 023510
[26] Matulis A and Peeters F M 1994 Phys. Rev. Lett. 72 1518
[27] Martino A D, Dell'Anna L and Egger R 2007 Phys. Rev. Lett. 98 066802
[28] Dell'Anna L and Martino A D 2009 Phys. Rev. B 79 045420
[29] Zhai F and Chang K 2008 Phys. Rev. B 77 113409
[30] Wu Z, Peeters F M and Chang K 2011 Appl. Phys. Lett. 98 162101
[31] Liu Y, Zhou X, Shao H, Zhou M and Zhou G 2014 Physica B 445 81
[32] Wu X Q and Meng H 2015 J. Appl. Phys. 117 203903
[33] Zhang Q, Chan K S and Long M 2016 J. Phys.:Condens. Matter 28 055301
[34] Masir M R, Vasilopoulos P and Peeters F M 2010 J. Phys.:Condens. Matter 22 465302
[35] Wang H, Chen X, Zhou X, Zhang L and Zhou G 2012 Physica B 407 3664
[36] Moldovan D, Masir M R, Covaci L and Peeters F M 2012 Phys. Rev. B 86 115431
[37] Xu H 1994 Phys. Rev. B 50 8469
[38] Xu H 1995 Phys. Rev. B 52 5803
[39] Ko D Y K and Inkson J C 1988 Phys. Rev. B 38 9945
[40] Zhou J, Cheng S, You W L and Jiang H 2016 Sci. Rep. 6 23211
[41] Tsai W F, Huang C Y, Chang T R, Lin H, Jeng H T and Bansil A 2013 Nat. Commun. 4 1500
[42] Zhang Y Y, Tsai W F, Chang K, An X T, Zhang G P, Xie X C and Li S S 2013 Phys. Rev. B 88 125431
[43] Bü ttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[44] Yang X D, Wang R Z, Guo Y, Yang W, Yu D B, Wang B and Yan H 2004 Phys. Rev. B 70 115303
[45] Saxena R, Saha A and Rao S 2015 Phys. Rev. B 92 245412
[1] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[2] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[3] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[4] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[5] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[6] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[7] Generation of valley pump currents in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克). Chin. Phys. B, 2019, 28(1): 017204.
[8] Influence of dopant concentration on electrical quantum transport behaviors in junctionless nanowire transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华). Chin. Phys. B, 2018, 27(8): 088106.
[9] Electronic properties of silicene in BN/silicene van der Waals heterostructures
Ze-Bin Wu(吴泽宾), Yu-Yang Zhang(张余洋), Geng Li(李更), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 077302.
[10] Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction
Lin Zhang(张林). Chin. Phys. B, 2018, 27(6): 067203.
[11] Electronic transport properties of Co cluster-decorated graphene
Chao-Yi Cai(蔡超逸), Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2018, 27(6): 067304.
[12] Spin-current pump in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克), Jun Wang(汪军). Chin. Phys. B, 2018, 27(5): 057801.
[13] Distinct edge states and optical conductivities in the zigzag and armchair silicene nanoribbons under exchange and electric fields
Jianfei Zou(邹剑飞), Jing Kang(康静). Chin. Phys. B, 2018, 27(3): 037301.
[14] Comparisons of electrical and optical properties between graphene and silicene-A review
Wirth-Lima A J, Silva M G, Sombra A S B. Chin. Phys. B, 2018, 27(2): 023201.
[15] Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
Run-Feng Xu(徐润峰), Kui Han(韩奎), Hai-Peng Li(李海鹏). Chin. Phys. B, 2018, 27(2): 026801.
No Suggested Reading articles found!