Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 080310    DOI: 10.1088/1674-1056/25/8/080310
GENERAL Prev   Next  

Decoherence suppression for three-qubit W-like state using weak measurement and iteration method

Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏)
Department of Communication Engineering, School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Multi-qubit entanglement states are the key resources for various multipartite quantum communication tasks. For a class of generalized three-qubit quantum entanglement, W-like state, we demonstrate that the weak measurement and the reversal measurement are capable of suppressing the amplitude damping decoherence by reducing the initial damping factor into a smaller equivalent damping factor. Furthermore, we propose an iteration method in the weak measurement and the reversal measurement to enhance the success probability of the total measurements. Finally, we discuss how the number of the iterations influences the overall effect of decoherence suppression, and find that the “half iteration” method is a better option that has more practical value.
Keywords:  quantum decoherence      W-like state      amplitude damping      weak measurement  
Received:  18 March 2016      Revised:  28 April 2016      Published:  05 August 2016
PACS:  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61172071), the International Scientific Cooperation Program of Shaanxi Province, China (Grant No. 2015KW-013), and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 16JK1711).
Corresponding Authors:  Guang Yang     E-mail:

Cite this article: 

Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏) Decoherence suppression for three-qubit W-like state using weak measurement and iteration method 2016 Chin. Phys. B 25 080310

[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[3] Yonezawa H, Aoki T and Furusawa A 2004 Nature 431 430
[4] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[5] Liu X S, Long G L, Tong D M and Li F 2002 Phys. Rev. A 65 022304
[6] Ye L and Guo G C 2005 Phys. Rev. A 71 034304
[7] Jennewein T, Simon C, Weihs G, Weinfurter H and Zeilinger A 2000 Phys. Rev. Lett. 84 4729
[8] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[9] Curty M, Lewenstein M and Lütkenhaus N 2004 Phys. Rev. Lett. 92 217903
[10] Madsen L S, Usenko V C, Lassen M, Filip R and Andersen U L 2012 Nat. Commun. 3 1083
[11] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[12] Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 18
[13] Lin S, Wen Q Y, Gao F and Zhu F C 2008 Phys. Rev. A 78 064304
[14] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[15] Zhang Z J, Li Y and Man Z X 2005 Phys. Rev. A 71 044301
[16] Helwig W, Cui W, Latorre J I, Riera A and Lo H K 2012 Phys. Rev. A 86 052335
[17] Pan J W, Simon C, Brukner Č and Zeilinger A 2001 Nature 410 1067
[18] Ren B C, Du F F and Deng F G 2014 Phys. Rev. A 90 052309
[19] Yang G, Lian B W and Nie M 2015 Acta Phys. Sin. 64 010303 (in Chinese)
[20] Shor P W 1995 Phys. Rev. A 52 2493
[21] Wang Y J, Bai B M, Li Z, Peng J Y and Xiao H L 2012 Chin. Phys. B 21 020304
[22] Terhal B M 2015 Rev. Mod. Phys. 87 307
[23] Li C K, Nakahara M, Poon Y T, Sze N S and Tomita 2011 Phys. Rev. A 84 044301
[24] Xu G F, Zhang J, Tong D M, Sjöqvist E and Kwek L C 2012 Phys. Rev. Lett. 109 170501
[25] Liu A P, Cheng L Y, Chen L, Su S L, Wang H F and Zhang S 2014 Opt. Commun. 313 180
[26] Koashi M and Ueda M 1999 Phys. Rev. Lett. 82 2598
[27] Korotkov A N and Jordan A N 2006 Phys. Rev. Lett. 97 166805
[28] Katz N, Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, Connell A O, Wang H, Cleland A N, Martinis J M and Korotkov A N 2008 Phys. Rev. Lett. 101 200401
[29] Sun Q, Al-Amri M and Zubairy M S 2009 Phys. Rev. A 80 033838
[30] Al-Amri M, Scully M O and Zubairy M S 2011 J. Phys. B:At. Mol. Opt. Phys. 44 165509
[31] Liao Z, Al-Amri M and Zubairy M S 2013 J. Phys. B:At. Mol. Opt. Phys. 46 145501
[32] Korotkov A N and Keane K 2010 Phys. Rev. A 81 040103
[33] Kim Y S, Lee J C, Kwon O and Kim Y H 2012 Nat. Phys. 8 117
[34] Lee J C, Jeong Y C, Kim Y S and Kim Y H 2011 Opt. Express 19 16309
[35] Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302
[36] Hwang T, Hwang C C and Li C M 2011 Phys. Scr. 83 045004
[37] Liu W, Wang Y B and Jiang Z T 2011 Opt. Commun. 284 3160
[38] Zhang W W and Zhang K J 2013 Quantum Infor. Process. 12 1981
[39] Xu G B, Wen Q Y, Gao F and Qin S J 2014 Quantum Infor. Process. 13 2587
[40] Cao Z L and Yang M 2003 J. Phys. B:At. Mol. Opt. Phys. 36 4245
[41] Ren B C, Du F F and Deng F G 2014 Phys. Rev. A 90 052309
[42] Liao X P, Fang M F, Fang J S and Zhu Q Q 2014 Chin. Phys. B 23 020304
[43] Lin X and Li H C 2005 Chin. Phys. 14 1724
[44] Zheng S B 2006 Phys. Rev. A 74 054303
[45] Tsai C W and Hwang T 2010 Opt. Commun. 283 4397
[46] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
[1] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[2] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[3] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[4] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[5] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[6] Effect of weak measurement on quantum correlations
L Jebli, M Amzioug, S E Ennadifi, N Habiballah, and M Nassik$. Chin. Phys. B, 2020, 29(11): 110301.
[7] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[8] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[9] Improving entanglement of assistance bylocal parity-time symmetric operation
Zhi He(贺志), Zun-Yan Nie(聂尊言), Qiong Wang(王琼). Chin. Phys. B, 2019, 28(12): 120305.
[10] Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel
Fugang Zhang(张福刚), Yongming Li(李永明). Chin. Phys. B, 2018, 27(9): 090301.
[11] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[12] Weak value amplification via second-order correlated technique
Ting Cui(崔挺), Jing-Zheng Huang(黄靖正), Xiang Liu(刘翔), Gui-Hua Zeng(曾贵华). Chin. Phys. B, 2016, 25(2): 020301.
[13] Amplifying and freezing of quantum coherence using weak measurement and quantum measurement reversal
Lian-Wu Yang(杨连武), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2016, 25(11): 110303.
[14] Time evolution of a squeezed chaotic field in an amplitude damping channel when used as a generating field for a squeezed number state
Xu Xing-Lei, Li Hong-Qi, Fan Hong-Yi. Chin. Phys. B, 2015, 24(7): 070306.
[15] Optimizing quantum correlation dynamics by weak measurement in dissipative environment
Du Shao-Jiang, Xia Yun-Jie, Duan De-Yang, Zhang Lu, Gao Qiang. Chin. Phys. B, 2015, 24(4): 044205.
No Suggested Reading articles found!