|
|
Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack |
Hong-Xin Ma(马鸿鑫)1,2, Wan-Su Bao(鲍皖苏)1,2, Hong-Wei Li(李宏伟)1,2, Chun Chou(周淳)1,2 |
1 PLA Information Engineering University, Zhengzhou 450001, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract We present a Trojan-horse attack on the practical two-way continuous-variable quantum key distribution system. Our attack mainly focuses on the imperfection of the practical system that the modulator has a redundancy of modulation pulse-width, which leaves a loophole for the eavesdropper inserting a Trojan-horse pulse. Utilizing the unique characteristics of two-way continuous-variable quantum key distribution that Alice only takes modulation operation on the received mode without any measurement, this attack allows the eavesdropper to render all of the final keys shared between the legitimate parties insecure without being detected. After analyzing the feasibility of the attack, the corresponding countermeasures are put forward.
|
Received: 12 February 2016
Revised: 19 April 2016
Accepted manuscript online:
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.-a
|
(Quantum information)
|
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grant Nos. 11304397 and 61505261). |
Corresponding Authors:
Wan-Su Bao
E-mail: 2010thzz@sina.com
|
Cite this article:
Hong-Xin Ma(马鸿鑫), Wan-Su Bao(鲍皖苏), Hong-Wei Li(李宏伟), Chun Chou(周淳) Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack 2016 Chin. Phys. B 25 080309
|
[1] |
Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
|
[2] |
Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, p. 175
|
[3] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[4] |
Bennet C H 1992 Phys. Rev. Lett. 68 3121
|
[5] |
Chen M and Liu X 2011 Chin. Phys. B 20 100305
|
[6] |
Ralph T C 1999 Phys. Rev. A 61 010303
|
[7] |
Hillery M 2000 Phys. Rev. A 61 022309
|
[8] |
Zhao J, Guo X, Wang X, Wang N, Li Y and Peng K 2013 Chin. Phys. Lett. 30 60302
|
[9] |
Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
|
[10] |
Wang X, Bai Z, Wang S, Li Y and Peng K 2013 Chin. Phys. Lett. 30 010305
|
[11] |
Lo H K and Chau H F 1999 Science 283 2050
|
[12] |
Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
|
[13] |
Yang W, Bao W, Li H, Zhou C and Li Y 2014 Chin. Phys. B 23 080303
|
[14] |
Leverrier A, Garcia-Patron R, Renner R and Cerf N J 2013 Phys. Rev. Lett. 110 030502
|
[15] |
Leverrier A 2015 Phys. Rev. Lett. 114 070501
|
[16] |
Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
|
[17] |
Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P and Diamanti E 2013 Nat. Photon. 7 378
|
[18] |
Fossier S, Diamanti E, Debuisschert T, Villing A, Tualle-Brouri R and Grangier P 2009 New. J. Phys. 11 045023
|
[19] |
Huang D, Lin D, Wang C, Liu W, Fang S, Peng J, Huang P and Zeng G 2015 Opt. Express 23 17511
|
[20] |
Wang C, Huang D, Huang P, Lin D, Peng J and Zeng G 2015 Sci. Rep. 5 14607
|
[21] |
Huang D, Huang P, Lin D and Zeng G 2016 Sci. Rep. 6 19201
|
[22] |
Silberhorn C, Ralph T C, Lutkenhaus N and Leuchs G 2002 Phys. Rev. Lett. 89 167901
|
[23] |
Pirandola S, Mancini S, Lloyd S and Braunstein S L 2008 Nat. Phys. 4 726
|
[24] |
Ottaviani C, Mancini S and Pirandola S 2015 Phys. Rev. A 92 062323
|
[25] |
Khan I, Jain N, Stiller B, Jouguet P, Kunz-Jacques S, Diamanti E, Marquardt C and Leuchs G, 2014 QCrypt 2014, Paris, France, pp. 1-5
|
[26] |
Sun M, Peng X, Shen Y and Guo H 2012 Int. J. Quantum Infor. 10 1250059
|
[27] |
Garcéa-Patron R and Cerf N J 2006 Phys. Rev. Lett. 97 190503
|
[28] |
Leverrier A, Alleaume R, Boutros J, Zéemor G and Grangier P 2008 Phys. Rev. A 77 042325
|
[29] |
Weedbrook C, Pirandola S, Garcéa-Patron R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
|
[30] |
Serafini A 2006 Phys. Rev. Lett. 96 110402
|
[31] |
Yoshikawa J I, Miwa Y, Huck A, Andersen U L, van Loock P and Furusawa A 2008 Phys. Rev. Lett. 101 250501
|
[32] |
Eisert J and Plenio M B 2003 Int. J. Quantum Infor. 1 479
|
[33] |
Jain N, Anisimova E, Khan I, Makarov V, Marquardt C and Leuchs G 2014 New J. Phys. 16 123030
|
[34] |
Jain N, Stiller B, Khan I, Makarov V, Marquardt C and Leuchs G 2015 IEEE J. Selec. Top. Quantum Electron. 21 168
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|