Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 080309    DOI: 10.1088/1674-1056/25/8/080309
GENERAL Prev   Next  

Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack

Hong-Xin Ma(马鸿鑫)1,2, Wan-Su Bao(鲍皖苏)1,2, Hong-Wei Li(李宏伟)1,2, Chun Chou(周淳)1,2
1 PLA Information Engineering University, Zhengzhou 450001, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  

We present a Trojan-horse attack on the practical two-way continuous-variable quantum key distribution system. Our attack mainly focuses on the imperfection of the practical system that the modulator has a redundancy of modulation pulse-width, which leaves a loophole for the eavesdropper inserting a Trojan-horse pulse. Utilizing the unique characteristics of two-way continuous-variable quantum key distribution that Alice only takes modulation operation on the received mode without any measurement, this attack allows the eavesdropper to render all of the final keys shared between the legitimate parties insecure without being detected. After analyzing the feasibility of the attack, the corresponding countermeasures are put forward.

Keywords:  quantum hacking      two-way      continuous-variable      quantum key distribution      Trojan-horse  
Received:  12 February 2016      Revised:  19 April 2016      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
  03.67.Dd (Quantum cryptography and communication security)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grant Nos. 11304397 and 61505261).

Corresponding Authors:  Wan-Su Bao     E-mail:  2010thzz@sina.com

Cite this article: 

Hong-Xin Ma(马鸿鑫), Wan-Su Bao(鲍皖苏), Hong-Wei Li(李宏伟), Chun Chou(周淳) Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack 2016 Chin. Phys. B 25 080309

[1] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[2] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, p. 175
[3] Ekert A K 1991 Phys. Rev. Lett. 67 661
[4] Bennet C H 1992 Phys. Rev. Lett. 68 3121
[5] Chen M and Liu X 2011 Chin. Phys. B 20 100305
[6] Ralph T C 1999 Phys. Rev. A 61 010303
[7] Hillery M 2000 Phys. Rev. A 61 022309
[8] Zhao J, Guo X, Wang X, Wang N, Li Y and Peng K 2013 Chin. Phys. Lett. 30 60302
[9] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[10] Wang X, Bai Z, Wang S, Li Y and Peng K 2013 Chin. Phys. Lett. 30 010305
[11] Lo H K and Chau H F 1999 Science 283 2050
[12] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[13] Yang W, Bao W, Li H, Zhou C and Li Y 2014 Chin. Phys. B 23 080303
[14] Leverrier A, Garcia-Patron R, Renner R and Cerf N J 2013 Phys. Rev. Lett. 110 030502
[15] Leverrier A 2015 Phys. Rev. Lett. 114 070501
[16] Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
[17] Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P and Diamanti E 2013 Nat. Photon. 7 378
[18] Fossier S, Diamanti E, Debuisschert T, Villing A, Tualle-Brouri R and Grangier P 2009 New. J. Phys. 11 045023
[19] Huang D, Lin D, Wang C, Liu W, Fang S, Peng J, Huang P and Zeng G 2015 Opt. Express 23 17511
[20] Wang C, Huang D, Huang P, Lin D, Peng J and Zeng G 2015 Sci. Rep. 5 14607
[21] Huang D, Huang P, Lin D and Zeng G 2016 Sci. Rep. 6 19201
[22] Silberhorn C, Ralph T C, Lutkenhaus N and Leuchs G 2002 Phys. Rev. Lett. 89 167901
[23] Pirandola S, Mancini S, Lloyd S and Braunstein S L 2008 Nat. Phys. 4 726
[24] Ottaviani C, Mancini S and Pirandola S 2015 Phys. Rev. A 92 062323
[25] Khan I, Jain N, Stiller B, Jouguet P, Kunz-Jacques S, Diamanti E, Marquardt C and Leuchs G, 2014 QCrypt 2014, Paris, France, pp. 1-5
[26] Sun M, Peng X, Shen Y and Guo H 2012 Int. J. Quantum Infor. 10 1250059
[27] Garcéa-Patron R and Cerf N J 2006 Phys. Rev. Lett. 97 190503
[28] Leverrier A, Alleaume R, Boutros J, Zéemor G and Grangier P 2008 Phys. Rev. A 77 042325
[29] Weedbrook C, Pirandola S, Garcéa-Patron R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[30] Serafini A 2006 Phys. Rev. Lett. 96 110402
[31] Yoshikawa J I, Miwa Y, Huck A, Andersen U L, van Loock P and Furusawa A 2008 Phys. Rev. Lett. 101 250501
[32] Eisert J and Plenio M B 2003 Int. J. Quantum Infor. 1 479
[33] Jain N, Anisimova E, Khan I, Makarov V, Marquardt C and Leuchs G 2014 New J. Phys. 16 123030
[34] Jain N, Stiller B, Khan I, Makarov V, Marquardt C and Leuchs G 2015 IEEE J. Selec. Top. Quantum Electron. 21 168
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[13] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!