Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 080306    DOI: 10.1088/1674-1056/25/8/080306
GENERAL Prev   Next  

Quantum dual signature scheme based on coherent states with entanglement swapping

Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎)
School of Information Science and Engineering, Central South University, Changsha 410083, China
Abstract  A novel quantum dual signature scheme, which combines two signed messages expected to be sent to two diverse receivers Bob and Charlie, is designed by applying entanglement swapping with coherent states. The signatory Alice signs two different messages with unitary operations (corresponding to the secret keys) and applies entanglement swapping to generate a quantum dual signature. The dual signature is firstly sent to the verifier Bob who extracts and verifies the signature of one message and transmits the rest of the dual signature to the verifier Charlie who verifies the signature of the other message. The transmission of the dual signature is realized with quantum teleportation of coherent states. The analysis shows that the security of secret keys and the security criteria of the signature protocol can be greatly guaranteed. An extensional multi-party quantum dual signature scheme which considers the case with more than three participants is also proposed in this paper and this scheme can remain secure. The proposed schemes are completely suited for the quantum communication network including multiple participants and can be applied to the e-commerce system which requires a secure payment among the customer, business and bank.
Keywords:  quantum dual signature      coherent states      entanglement swapping      quantum communication network  
Received:  18 March 2016      Revised:  12 April 2016      Published:  05 August 2016
PACS:  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012).
Corresponding Authors:  Jin-Jing Shi     E-mail:  shijinjing@csu.edu.cn

Cite this article: 

Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎) Quantum dual signature scheme based on coherent states with entanglement swapping 2016 Chin. Phys. B 25 080306

[1] Zeng G and Keitel C H 2002 Phys. Rev. A 65 042312
[2] Greenberger D, Hentschel K and Weinert F 2009 Compendium of Quantum Physics:Concepts, Experiments, History and Philosophy (Berlin:Springer)
[3] Zeng G, Lee M, Guo Y and He G Q 2007 Int. J. Quantum Infor. 5 553
[4] Gottesman D and Chuang I 2001 arXiv:0105032[quant-ph]
[5] Curty M and Lütkenhaus N 2008 Phys. Rev. A 77 046301
[6] Zeng G 2008 Phys. Rev. A 78 016301
[7] Wen X and Liu Y 2007 The First International Symposium on Data, Privacy, and E-Commerce, November 1-3, 2007, Chengdu, China, p. 496
[8] Shi J, Shi R, Tang Y and Lee M H 2011 Quantum Infor. Process. 10 653
[9] Shi J, Shi R, Guo Y, Peng X, Lee M H and Park D 2012 Int. J. Theor. Phys. 51 1038
[10] Shi J, Shi R, Guo Y, Peng X and Tang Y 2013 Sci. China-Infor. Sci. 56 052115
[11] Dunjko V, Wallden P and Andersson E 2014 Phys. Rev. Lett. 112 040502
[12] Wang C, Liu J W and Shang T 2014 Chin. Phys. B 23 060309
[13] Shang T, Zhao X J, Wang C and Liu J W 2015 Quantum Infor. Process. 14 393
[14] Zhou D L and Kuang L M 2009 Chin. Phys. B 18 1328
[15] Wang X and Sanders B C 2001 Phys. Rev. A 65 012303
[16] Zhang Y M, Li X W, Yang W and Jin G R 2013 Phys. Rev. A 88 043832
[17] Van Enk S J and Hirota O 2001 Phys. Rev. A 64 022313
[18] Chao W and Hu Z 2011 International Conference on Intelligence Science and Information Engineering, 2011, p. 85
[19] Zhang C Y and Chao W 2011 International Symposium on Intelligence Information Processing and Trusted Computing, October 22-23, 2011, Wuhan, China, p. 245
[20] Sangouard N, Simon C, Gisin N, Laurat J, Tualle-Brouri R and Grangier P 2010 J. Opt. Soc. Am. B 27 A137
[21] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[22] Braunstein S L and Van Loock P 2005 Rev. Mod. Phys. 77 513
[23] Wang X 2001 Phys. Rev. A 64 022302
[24] Cai X H, Guo J R, Nie J H and Jia J P 2006 Chin. Phys. 15 488
[25] Kim M S, Son W, Bužek V and Knight P L 2002 Phys. Rev. A 65 032323
[26] Liao J Q and Kuang L M 2006 Chin. Phys. 15 2246
[27] Zhou D L and Kuang L M 2009 Chin. Phys. B 18 1328
[28] Jeong H, Kim M S and Lee J 2001 Phys. Rev. A 64 052308
[29] Joo J and Ginossar E 2015 arXiv:1509.02859[quant-ph]
[30] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[31] Yang J, Xu B, Peng X and Guo H 2012 Phys. Rev. A 85 052302
[32] Walk N, Ralph T C, Symul T and Lam P K 2013 Phys. Rev. A 87 020303
[33] Gong L H, Song H C, He C S, Liu Y and Zhou N R 2014 Phys. Scr. 89 035101
[34] Vourdas A and Dunningham J A 2005 Phys. Rev. A 71 013809
[35] Andersson E, Curty M and Jex I 2006 Phys. Rev. A 74 022304
[36] Li Q, Chan W H and Long D Y 2009 Phys. Rev. A 79 054307
[37] Lodewyck J, Bloch M, and Grangier P 2007 Phys. Rev. A 76 042305
[38] García-Patrón R and Cerf N J 2006 Phys. Rev. Lett. 97 190503
[39] Li Y, Zhang J, Zhang J X and Zhang T C 2006 Chin. Phys. 15 1766
[40] He G Q, Zhu S W, Guo H B and Zeng G H 2008 Chin. Phys. B 17 1263
[41] Zhu J, He G Q and Zeng G H 2007 Chin. Phys. 16 1364
[1] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[2] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[3] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[4] Gazeau-Klauder coherent states examined from the viewpoint of diagonal ordering operation technique
Dušan Popov, Romeo Negrea, Miodrag Popov. Chin. Phys. B, 2016, 25(7): 070301.
[5] Quantum frequency doubling based on tripartite entanglement with cavities
Juan Guo(郭娟), Zhi-Feng Wei(魏志峰), Su-Ying Zhang(张素英). Chin. Phys. B, 2016, 25(2): 020302.
[6] Hong-Ou-Mandel interference with two independent weak coherent states
Hua Chen(陈华), Xue-Bi An(安雪碧), Juan Wu(伍娟), Zhen-Qiang Yin(银振强), Shuang Wang(王双), Wei Chen(陈巍), Zhen-Fu Han(韩正甫). Chin. Phys. B, 2016, 25(2): 020305.
[7] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[8] An optimized encoding method for secure key distribution by swapping quantum entanglement and its extension
Gao Gan. Chin. Phys. B, 2015, 24(8): 080305.
[9] A novel quantum information hiding protocol based on entanglement swapping of high-level Bell states
Xu Shu-Jiang, Chen Xiu-Bo, Wang Lian-Hai, Niu Xin-Xin, Yang Yi-Xian. Chin. Phys. B, 2015, 24(5): 050306.
[10] Quantum communication for satellite-to-ground networks with partially entangled states
Chen Na, Quan Dong-Xiao, Pei Chang-Xing, Yang-Hong. Chin. Phys. B, 2015, 24(2): 020304.
[11] Maximal entanglement from photon-added nonlinear coherent states via unitary beam splitters
K. Berrada. Chin. Phys. B, 2014, 23(2): 024208.
[12] Distributed wireless quantum communication networks with partially entangled pairs
Yu Xu-Tao, Zhang Zai-Chen, Xu Jin. Chin. Phys. B, 2014, 23(1): 010303.
[13] Distributed wireless quantum communication networks
Yu Xu-Tao, Xu Jin, Zhang Zai-Chen. Chin. Phys. B, 2013, 22(9): 090311.
[14] Barut–Girardello and Gilmore–Perelomov coherent states for pseudoharmonic oscillators and their nonclassical properties:Factorization method
M K Tavassoly, H R Jalali. Chin. Phys. B, 2013, 22(8): 084202.
[15] Quantum steganography with large payload based on dense coding and entanglement swapping of Greenberger-Horne-Zeilinger states
Ye Tian-Yu, Jiang Li-Zhen. Chin. Phys. B, 2013, 22(5): 050309.
No Suggested Reading articles found!