Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 080305    DOI: 10.1088/1674-1056/24/8/080305
GENERAL Prev   Next  

An optimized encoding method for secure key distribution by swapping quantum entanglement and its extension

Gao Gan (高干)
Department of Electrical Engineering, Tongling University, Tongling 244000, China
Abstract  

Song [Song D 2004 Phys. Rev. A 69 034301] first proposed two key distribution schemes with the symmetry feature. We find that, in the schemes, the private channels which Alice and Bob publicly announce the initial Bell state or the measurement result through are not needed in discovering keys, and Song's encoding methods do not arrive at the optimization. Here, an optimized encoding method is given so that the efficiencies of Song's schemes are improved by 7/3 times. Interestingly, this optimized encoding method can be extended to the key distribution scheme composed of generalized Bell states.

Keywords:  quantum key distribution      optimized encoding method      entanglement swapping      generalized Bell states  
Received:  30 December 2014      Revised:  15 February 2015      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11205115), the Program for Academic Leader Reserve Candidates in Tongling University (Grant No. 2014tlxyxs30), and the 2014-year Program for Excellent Youth Talents in University of Anhui Province, China.

Corresponding Authors:  Gao Gan     E-mail:  gaogan0556@163.com

Cite this article: 

Gao Gan (高干) An optimized encoding method for secure key distribution by swapping quantum entanglement and its extension 2015 Chin. Phys. B 24 080305

[1] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processings, Bangalore, India (IEEE, New York, 1984) p. 175
[2] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[3] Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[4] Song D 2004 Phys. Rev. A 69 034301
[5] Li C Y, Zhou H Y, Wang Y and Deng F G 2005 Chin. Phys. Lett. 22 1049
[6] Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504
[7] He G Q and Zeng G H 2006 Chin. Phys. 15 1284
[8] Chen P, Li Y S, Deng F G and Long G L 2007 Commun. Theor. Phys. 47 49
[9] Gao G 2009 Commun. Theor. Phys. 51 820
[10] Gao G 2008 Opt. Commun. 281 876
[11] Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
[12] Wang C, Xiao L, Wang W, Zhang G and Long G L 2009 J. Opt. Soc. Am. B 26 2072
[13] Zhang X Z, Gong W G, Tan Y G, Ren Z Z and Guo X T 2009 Chin. Phys. B 18 2143
[14] Shen Y, Peng X, Yang J and Guo H 2011 Phys. Rev. A 83 052304
[15] Yang J, Xu B, Peng X and Guo H 2012 Phys. Rev. A 85 052302
[16] Fung C F, Ma X, Chau H F and Cai Q 2012 Phys. Rev. A 85 032308
[17] Deng F G, Liu X S, Ma Y J, Xiao L and Long G L 2002 Chin. Phys. Lett. 19 893
[18] Huang P, He G, Fang J and Zeng G 2013 Phys. Rev. A 87 012317
[19] Zhou Y Y, Zhou X J, Tian P G and Wang Y J 2013 Chin. Phys. B 22 010305
[20] Li H W, Yin Z Q, Chen W, Wu S, Guo G C and Han Z F 2014 Phys. Rev. A 89 032302
[21] Kwiat P G, Mattle K, Weinfurter H and Zeilinger A 1995 Phys. Rev. Lett. 75 4337
[22] Turchette Q A, Wood C S, King B E, et al. 1998 Phys. Rev. Lett. 81 3631
[23] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[24] Duan L M 2002 Phys. Rev. Lett. 88 170402
[25] Zukowski M et al. 1993 Phys. Rev. Lett. 71 4287
[26] Cabello A 2000 Phys. Rev. Lett. 85 5635
[27] Rigolin G 2005 Phys. Rev. A 71 032303
[28] Greenberger D M, Horne M A and Zeilinger A 1989 in Bell's Theorem, Quantum Theory, and Conceptions of the Universe, edited by Kafatos M (Dordrecht: Kluwer Academic) pp. 69–72
[29] Zeilinger A, Horne M A and Greenberger D M 1992 in Proceedings of Squeezed States and Quantum Uncertainty, edited by Han D, Kim Y S, and Zachary W W, NASA Conference Publication No. 3135 (NASA, Washington, DC, 1992), pp. 73–81
[30] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[31] Wen J J, Yeon K H, Wang H F and Zhang S 2014 Chin. Phys. B 23 040301
[32] Yeo Y and Chua W K 2006 Phys. Rev. Lett. 96 060502
[33] Wang H F and Zhang S 2009 Phys. Rev. A 79 042336
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[11] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[12] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[13] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[14] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[15] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
No Suggested Reading articles found!