Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 010303    DOI: 10.1088/1674-1056/23/1/010303
GENERAL Prev   Next  

Distributed wireless quantum communication networks with partially entangled pairs

Yu Xu-Tao (余旭涛)a, Zhang Zai-Chen (张在琛)a, Xu Jin (徐进)b
a School of Information Science and Engineering, Southeast University, Nanjing 210096, China;
b Department of Physics, Southeast University, Nanjing 210096, China
Abstract  Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.
Keywords:  distributed wireless quantum communication networks      partially entangled pairs      routing      multi-hop teleportation  
Received:  27 July 2013      Revised:  19 September 2013      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 60921063) and the National High Technology Research and Development Program of China (Grant No. 2013AA013601).
Corresponding Authors:  Yu Xu-Tao     E-mail:  yuxutao@seu.edu.cn

Cite this article: 

Yu Xu-Tao (余旭涛), Zhang Zai-Chen (张在琛), Xu Jin (徐进) Distributed wireless quantum communication networks with partially entangled pairs 2014 Chin. Phys. B 23 010303

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (London: Cambridge University Press)
[2] Wootters W and Zurek W 1982 Nature 299 802
[3] Chen P, Long G L and Deng F G 2006 Chin. Phys. 15 2228
[4] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wooters W K 1993 Phys. Rev. Lett. 70 1895
[5] Ekert A K 1991 Phys. Rev Lett. 67661
[6] Agrawal P and Pati A K 2002 Phys. Lett. A 305 12
[7] Yan F L and Wang D 2003 Phys. Lett. A 316 297
[8] Rigolin G 2005 Phys. Rev. A 71 032303
[9] Gordon G and Rigolin G 2006 Phys. Rev. A 73 042309
[10] Ishizaka S and Hiroshima T 2008 Phys. Rev. Lett. 101 240501
[11] Wang M Y and Yan F L 2011 Chin. Phys. B 20 120309
[12] Peng J Y and Mo Z W 2013 Chin. Phys. B 22 050310
[13] Zhang Y L, Wang Y N, Xiao X R, Jing L, Mu L Z, Korepin V E and Fan H 2013 Phys. Rev. A 87 022302
[14] Yang C P and Guo G C 1999 Chin. Phys. Lett. 16 628
[15] Chen X B, Zhu F C and Wen Q Y 2006 Chin. Phys. 15 2240
[16] Zhang C M and Zha X W 2008 Acta Phys. Sin. 57 1339 (in Chinese)
[17] Cheng S T, Wang C Y and Tao M H 2005 IEEE J. Sel. Area Comm. 23 1424
[18] Zhou N R, Zeng G H, Zhu F C and Liu S Q 2006 J. Shanghai Jiaotong Univ. 40 1885 (in Chinese)
[19] Bacinoglu T, Gulbahar B and Akan O B 2010 Proceedings of IEEE Global Communications Conference, December 6–10, Miami, USA, p. 1
[20] Yu X T, Xu J and Zhang Z C 2012 Acta Phys. Sin. 61 220303 (in Chinese)
[21] Yu X T, Xu J and Zhang Z C 2013 Chin. Phys. B. 9 090311
[22] Chen P X, Liang L M, Li C Z and Huang M Q 2003 Phys. Rev. A 66 022309
[23] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[24] Schmitt-Manderbach T, Weier H, Fürst M, Ursin R, Tiefenbacher F, Scheidl T, Perdigues J, Sodnik Z, Kurtsiefer C, Rarity J, Zeilinger A and Weinfurter H 2007 Phys. Rev. Lett. 98 10504
[25] Cubitt T S, Verstraete F, Dur W and Cirac J I 2003 Phys. Rev. Lett. 91 037902
[26] Mista L and Korolkova N 2008 Phys. Rev. A 77 050302
[27] Perkins C, Royer E B and Das S 2003 IETF Network Working Group RFC 3561
[28] Zhang Z A 2006 IEEE Commun. Surv. Tut. 8 24
[29] Imre S 2007 IEEE Trans. Comp. 56 706
[30] Li W L, Li C F and Guo G C 2000 Phys. Rev. A 61 034301
[31] Gour G 2004 Phys. Rev. A 70 042301
[32] Mod L J and Grudka A 2008 Phys. Rev. Lett. 100 110503
[33] Rigolin G J 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235504
[34] Fortes R and Rigolin G 2013 Ann. Phys. 336 517
[35] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[36] Vollbrecht K G H and Verstraete F 2005 Phys. Rev. A 71 062325
[37] Hostens E, Dehaene J and Moor B D 2006 Phys. Rev. A 73 042316
[38] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
[39] Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
[1] Quantum routing of few photons using a nonlinear cavity coupled to two chiral waveguides
Jian-Shuang Liu(刘建双), Ya Yang(杨亚), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2022, 31(11): 110301.
[2] Bidirectional highly-efficient quantum routing in a T-bulge-shaped waveguide
Jia-Hao Zhang(张家豪), Da-Yong He(何大永), Gang-Yin Luo(罗刚银), Bi-Dou Wang(王弼陡), and Jin-Song Huang(黄劲松). Chin. Phys. B, 2021, 30(3): 034204.
[3] Error-detected single-photon quantum routing using a quantum dot and a double-sided microcavity system
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), Shou Zhang(张寿). Chin. Phys. B, 2019, 28(2): 020301.
[4] Optimized routing strategy for complex network with multiple priorities
Shi-Bao Li(李世宝), Zong-Xing Sun(孙宗星), Jian-Hang Liu(刘建航), Hai-Hua Chen(陈海华). Chin. Phys. B, 2016, 25(8): 088902.
[5] Multi-hop teleportation based on W state and EPR pairs
Hai-Tao Zhan(占海涛), Xu-Tao Yu(余旭涛), Pei-Ying Xiong(熊佩颖), Zai-Chen Zhang(张在琛). Chin. Phys. B, 2016, 25(5): 050305.
[6] Global forward-predicting dynamic routing for traffic concurrency space stereo multi-layer scale-free network
Xie Wei-Hao (解维浩), Zhou Bin (周斌), Liu En-Xiao (刘恩晓), Lu Wei-Dang (卢为党), Zhou Ting (周婷). Chin. Phys. B, 2015, 24(9): 098903.
[7] Improved routing strategy based on gravitational field theory
Song Hai-Quan (宋海权), Guo Jin (郭进). Chin. Phys. B, 2015, 24(10): 108901.
[8] Distributed wireless quantum communication networks
Yu Xu-Tao (余旭涛), Xu Jin (徐进), Zhang Zai-Chen (张在琛). Chin. Phys. B, 2013, 22(9): 090311.
[9] Analysis of network traffic flow dynamics based on gravitational field theory
Liu Gang (刘刚), Li Yong-Shu (李永树), Zhang Xi-Ping (张喜平). Chin. Phys. B, 2013, 22(6): 068901.
[10] Traffic resource allocation for complex networks
Ling Xiang (凌翔), Hu Mao-Bin (胡茂彬), Long Jian-Cheng (龙建成), Ding Jian-Xun (丁建勋), Shi Qin (石琴). Chin. Phys. B, 2013, 22(1): 018904.
[11] Effects of node buffer and capacity on network traffic
Ling Xiang (凌翔), Hu Mao-Bin (胡茂彬), Ding Jian-Xun (丁建勋). Chin. Phys. B, 2012, 21(9): 098902.
[12] Generalized minimum information path routing strategy on scale-free networks
Zhou Si-Yuan(周思源), Wang Kai(王开), Zhang Yi-Feng(张毅锋) Pei Wen-Jiang(裴文江) Pu Cun-Lai(濮存来), and Li Wei(李微) . Chin. Phys. B, 2011, 20(8): 080501.
[13] Adaptive local routing strategy on a scale-free network
Liu Feng(刘锋) Zhao Han(赵寒), Li Ming(李明), Ren Feng-Yuan(任丰原), and Zhu Yan-Bo(朱衍波). Chin. Phys. B, 2010, 19(4): 040513.
[14] Influence of group-velocity mismatch on soliton switching in a nonlinear fibre coupler
Li Hong (李宏), Huang De-Xiu (黄德修), Wang Dong-Ning (王东宁). Chin. Phys. B, 2003, 12(4): 415-418.
No Suggested Reading articles found!