Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 020304    DOI: 10.1088/1674-1056/24/2/020304
GENERAL Prev   Next  

Quantum communication for satellite-to-ground networks with partially entangled states

Chen Na (陈娜), Quan Dong-Xiao (权东晓), Pei Chang-Xing (裴昌幸), Yang-Hong (杨宏)
State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071, China
Abstract  To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved.
Keywords:  satellite-to-ground quantum communication network      partially entangled states      entanglement swapping      quantum teleportation  
Received:  26 July 2014      Revised:  13 September 2014      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61072067 and 61372076), the 111 Project (Grant No. B08038), the Fund from the State Key Laboratory of Integrated Services Networks (Grant No. ISN 1001004), and the Fundamental Research Funds for the Central Universities (Grant Nos. K5051301059 and K5051201021).
Corresponding Authors:  Chen Na     E-mail:  na_chen@outlook.com

Cite this article: 

Chen Na (陈娜), Quan Dong-Xiao (权东晓), Pei Chang-Xing (裴昌幸), Yang-Hong (杨宏) Quantum communication for satellite-to-ground networks with partially entangled states 2015 Chin. Phys. B 24 020304

[1] Wootters W and Zurek W 1982 Nature 299 802
[2] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[3] Chen P, Long G L and Deng F G 2006 Chin. Phys. 15 2228
[4] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wooters W K 1993 Phys. Rev. Lett. 70 1895
[5] Cheng S T, Wang C Y and Tao M H 2005 IEEE J. Sel. Area Comm. 23 1424
[6] Zhou N R, Zeng G H, Zhu F C and Liu S Q 2006 J. Shanghai Jiaotong University 40 1885 (in Chinese)
[7] Bacinoglu T, Glubahar B and Akan O B 2010 Proceedings of IEEE Global Communications Conference, December 6-10, 2010, Miami, USA, p. 1
[8] Yu X T, Xu J and Zhang Z C 2012 Acta Phys. Sin. 61 220303 (in Chinese)
[9] Wang K, Yu X T, Lu S L and Gong Y X 2014 Phys. Rev. A 89 022329
[10] Yu X T, Xu J and Zhang Z C 2013 Chin. Phys. B 22 090311
[11] Li W L, Li C F and Guo G C 2000 Phys. Rev. A 61 034301
[12] Agrawal P and Pati A K 2002 Phys. Lett. A 305 12
[13] Modlawska J and Grudka A 2008 Phys. Rev. Lett. 100 110503
[14] Rigolin G 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235504
[15] Wang M Y and Yan F L 2009 Eur. Phys. J. D 54 111
[16] Gordon G and Rigolin G 2010 Opt. Commun. 283 184
[17] Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
[18] Yu X T, Zhang Z C and Xu J 2014 Chin. Phys. B 23 010303
[19] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett 76 722
[20] Chen P X, Liang L M, Li C Z and Huang M Q 2002 Phys. Rev. A 66 022309
[21] Schlienz J and Mahler G 1995 Phys. Rev. A 52 4396
[22] Perkins C E and Royer E M 1999 Proceedings of the Second IEEE Workshop on Mobile Computing Systems and Applications (IEEE)
[23] Yang D N and Liao W J 2008 IEEE T Veh. Technol. 57 2560
[1] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[2] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[3] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[4] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[5] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[6] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[7] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[8] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[9] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[10] Quantum dual signature scheme based on coherent states with entanglement swapping
Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎). Chin. Phys. B, 2016, 25(8): 080306.
[11] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[12] An optimized encoding method for secure key distribution by swapping quantum entanglement and its extension
Gao Gan (高干). Chin. Phys. B, 2015, 24(8): 080305.
[13] Detection of the ideal resource for multiqubit teleportation
Zhao Ming-Jing (赵明镜), Chen Bin (陈斌), Fei Shao-Ming (费少明). Chin. Phys. B, 2015, 24(7): 070302.
[14] Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity
Jino Heo, Chang-Ho Hong, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(5): 050304.
[15] A novel quantum information hiding protocol based on entanglement swapping of high-level Bell states
Xu Shu-Jiang (徐淑奖), Chen Xiu-Bo (陈秀波), Wang Lian-Hai (王连海), Niu Xin-Xin (钮心忻), Yang Yi-Xian (杨义先). Chin. Phys. B, 2015, 24(5): 050306.
No Suggested Reading articles found!