Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 080307    DOI: 10.1088/1674-1056/25/8/080307
GENERAL Prev   Next  

Transferring information through a mixed-five-spin chain channel

Hamid Arian Zad, Hossein Movahhedian
Department of Physics, Shahrood University of Technology, 36155-316 Shahrood, Iran
Abstract  We initially introduce one-dimensional mixed-five-spin chain with Ising-XY model which includes mixture of spins-1/2 and spins-1. Here, it is considered that nearest spins (1, 1/2) have Ising-type interaction and nearest spins (1/2, 1/2) have both XY-type and Dzyaloshinskii-Moriya (DM) interactions together. Nearest spins (1, 1) have XX Heisenberg interaction. This system is in the vicinity of an external homogeneous magnetic field B in thermal equilibrium state. We promote the quantum information transmitting protocol verified for a normal spin chain with simple model (refer to Rossini D, Giovannetti V and Fazio R 2007 Int. J. Quantum Infor. 5 439) (widely in reference: Giovannetti V and Fazio R 2005 Phys. Rev. A 71 032314) by means of considering the suggested mixed-five-spin chain as a quantum communication channel for transmitting both qubits and qutrits ideally. Hence, we investigate some useful quantities such as quantum capacity and quantum information transmission rate for the system. Finally, we conclude that, when the DM interaction between spins (1/2, 1/2) increases the system is a more ideal channel for transmitting information.
Keywords:  Dzyaloshinskii-Moriya interaction      XX Heisenberg interaction      communication channel      transmission rate  
Received:  07 March 2016      Revised:  07 April 2016      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  05.60.Gg (Quantum transport)  
Corresponding Authors:  Hamid Arian Zad     E-mail:  arianzad.hamid@yahoo.com

Cite this article: 

Hamid Arian Zad, Hossein Movahhedian Transferring information through a mixed-five-spin chain channel 2016 Chin. Phys. B 25 080307

[1] Ciccarello F, Palma G M, Zarcone M, Omar Y and Vieira V R 2006 New J. Phys. 8 214
[2] Macchiavello C and Palma G M 2002 Phys. Rev. A 65 050301
[3] Adami C and Cerf N J 1997 Phys. Rev. A 56 3470
[4] Caruso F, Huelga S F, Plenio M B 2010 Phys. Rev. Lett. 105 190501
[5] Devetak I and Shor P W 2004 arXiv:quant-ph/0311131
[6] Holevo A S and Giovannetti V 2012 Rep. Prog. Phys. 75 046001
[7] Caruso F, Giovannetti V, Lupo C and Mancini S 2014 Rev. Mod. Phys. 86 1203
[8] Burgarth D and Bose S 2005 Phys. Rev. A 71 052315
[9] Burgarth D and Bose S 2005 New J. Phys. 7 135
[10] Shizume K, Jacobs K, Burgarth D and Bose S 2007 Phys. Rev. A 75 062328
[11] Rossini D, Giovannetti V and Fazio R 2007 Int. J. Quantum Infor. 5 439
[12] Giovannetti V and Fazio R 2005 Phys. Rev. A 71 032314
[13] Plenio M B and Virmani S 2007 Phys. Rev. Lett. 99 120504
[14] Bayat A, Burgarth D, Mancini S and Bose S 2008 Phys. Rev. A 77 050306
[15] Demianowicz M and Horodecki P 2006 Phys. Rev. A 74 042336
[16] Arrigo A D, Benenti G, Falci G and Macchiavello C 2013 Phys. Rev. A 88 042337
[17] Hausladen P, Jozsa R, Schumacher B, land M W and Wootters W K 1996 Phys. Rev. A 54 1869
[18] Wilde M M 2012 From Classical to Quantum Shannon Theory (arXiv:quant-ph/1106.01445v4) p.670
[19] Devetak I 2004 (arXiv:quant-ph/0304127)
[20] Holevo A S 1998 IEEE Trans. Infor. Theor. 44 269
[21] Holevo A S 1997 (arXiv:quant-ph/9708046)
[22] Bennett C H and Shor P W 1998 IEEE Trans. Infor. Theor. 44 2724
[23] Devetak I 2005 IEEE Trans. Infor. Theor. 51 44
[24] Devetak I and Winter A 2005 Proc. R. Soc. A 461 207
[25] Zhang G F 2007 Phys. Rev. A 75 034302
[26] Caruso F, Giovannetti V and Palma G M 2010 Phys. Rev. Lett. 104 020503
[27] Fan H, Wang Y N, Jing Li, Yue J D, Shi H D, Zhang Y L and Mu L Z 2014 Phys. Rep. 544 241-322
[28] Fan H, Korepin V and Roychowdhury V 2004 Phys. Rev. Lett. 93 227203
[29] Zad H A 2015 Acta Phys. Pol. B 46 1911
[30] Zad H A 2016 Chin. Phys. B 25 030303
[31] Han S D and Aydiner E 2014 Chin. Phys. B 23 050305
[32] Ivanov N B 2009 Condens. Matt. Phys. 12 435
[33] Yamamoto S and Hori H 2005 Phys. Rev. B 72 054423
[34] Jafari R and Langari A 2011 Int. J. Quantum Infor. 9 1057
[1] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[2] Exact soliton solutions in anisotropic ferromagnetic wires with Dzyaloshinskii-Moriya interaction
Qiu-Yan Li(李秋艳), Dun-Zhao(赵敦), and Zai-Dong Li(李再东). Chin. Phys. B, 2021, 30(1): 017504.
[3] Quantum steering in Heisenberg models with Dzyaloshinskii-Moriya interactions
Hui-Zhen Li(李慧贞), Rong-Sheng Han(韩榕生), Ye-Qi Zhang(张业奇), Liang Chen(陈亮). Chin. Phys. B, 2018, 27(12): 120304.
[4] Thermal entanglement of the Ising–Heisenberg diamond chain with Dzyaloshinskii–Moriya interaction
Qiao Jie (谯洁), Zhou Bin (周斌). Chin. Phys. B, 2015, 24(11): 110306.
[5] The effects of the Dzyaloshinskii-Moriya interaction on the ground-state properties of the XY chain in a transverse field
Zhong Ming (钟鸣), Xu Hui (徐卉), Liu Xiao-Xian (刘小贤), Tong Pei-Qing (童培庆). Chin. Phys. B, 2013, 22(9): 090313.
[6] Magnetization reversal within Dzyaloshinskii–Moriya interaction under on-site Coulomb interaction in BiCrO3
Feng Hong-Jian (冯宏剑 ). Chin. Phys. B, 2012, 21(8): 087103.
No Suggested Reading articles found!