Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 078203    DOI: 10.1088/1674-1056/25/7/078203

Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes

Pin Liu(刘品)1, Qiang Ma(马强)1,2, Zheng Fang(方铮)1, Jie Ma(马洁)1, Yong-Sheng Hu(胡勇胜)1, Zhi-Bin Zhou(周志彬)2, Hong Li(李泓)1, Xue-Jie Huang(黄学杰)1, Li-Quan Chen(陈立泉)1
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Lithium (Li) metal is an ideal anode material for rechargeable Li batteries, due to its high theoretical specific capacity (3860 mAh/g), low density (0.534 g/cm3), and low negative electrochemical potential (-3.040 V vs. standard hydrogen electrode). In this work, the concentrated electrolytes with dual salts, composed of Li[N(SO2F)2] (LiFSI) and Li[N(SO2CF3)2] (LiTFSI) were studied. In this dual-salt system, the capacity retention can even be maintained at 95.7% after 100 cycles in Li|LiFePO4 cells. A Li|Li cell can be cycled at 0.5 mA/cm2 for more than 600 h, and a Li|Cu cell can be cycled at 0.5 mA/cm2 for more than 200 cycles with a high average Coulombi efficiency of 99%. These results show that the concentrated dual-salt electrolytes exhibit superior electrochemical performance and would be a promising candidate for application in rechargeable Li batteries.

Keywords:  lithium metal rechargeable batteries      dual-salt electrolyte      concentrated electrolytes  
Received:  21 March 2016      Published:  05 July 2016
PACS:  82.47.Aa (Lithium-ion batteries)  
  65.40.gk (Electrochemical properties)  
  82.45.Fk (Electrodes)  

Project supported by the National Nature Science Foundation of China (Grant Nos. 51222210, 51472268, 51421002, and 11234013) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010300).

Corresponding Authors:  Yong-Sheng Hu     E-mail:

Cite this article: 

Pin Liu(刘品), Qiang Ma(马强), Zheng Fang(方铮), Jie Ma(马洁), Yong-Sheng Hu(胡勇胜), Zhi-Bin Zhou(周志彬), Hong Li(李泓), Xue-Jie Huang(黄学杰), Li-Quan Chen(陈立泉) Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes 2016 Chin. Phys. B 25 078203

[1] Zhamu A, Chen G, Liu C, Neff D, Fang Q, Yu Z, Xiong W, Wang Y, Wang X and Jang B Z 2012 Energy & Environmental Science 5 5701
[2] Whittingham M S 2012 Proceedings of the IEEE 100 1518
[3] Xu W, Wang J, Ding F, Chen X, Nasybutin E, Zhang Y and Zhang J G 2014 Energy & Environmental Science 7 513
[4] Flandrois S and Simon B 1999 Carbon 37 165
[5] Bruce P G, Freunberger S A, Hardwick L J and Tarascon J M 2012 Nat. Mater. 11 19
[6] Xu K 2014 Chem. Rev. 114 11503
[7] Aurbach D, Zinigrad E, Cohen Y and Teller H 2002 Solid State Ion. 148 405
[8] Suo L, Hu Y S, Li H, Armand M and Chen L 2013 Nat. Commun. 4 1481
[9] Miao R, Yang J, Feng X, Jia H, Wang J and Nuli Y 2014 J. Power Sources 271 291
[10] Ma Q, Fang Z, Liu P, Ma J, Qi X, Feng W, Nie J, Hu Y S, Li H, Huang X, Chen L and Zhou Z 2016 Chem. Electro. Chem. 3 531
[11] Park M S, Ma S B, Lee D J, Im D, Doo S G and Yamamoto O 2014 Sci. Rep. 4 3815
[12] Zheng G, Lee S W, Liang Z, Lee H W, Yan K, Yao H, Wang H, Li W, Chu S and Cui Y 2014 Nat. Nanotech. 9 618
[13] Aurbach D 2000 J. Power Sources 89 206
[14] Howlett P C, Brack N, Hollenkamp A F, Forsyth M and MacFarlane D R 2006 J. Electrochem. Soc. 153 A595
[15] Shiraishi S, Kanamura K and Takehara Z 1997 Langmuir 13 3542
[16] Shiraishi S, Kanamura K and Takehara Z 1999 J. Electrochem. Soc. 146 1633
[17] Aurbach D, Zinigrad E, Teller H, Cohen Y, Salitra G, Yamin H, Dan P and Elster E 2002 J. Electrochem. Soc. 149 A1267
[18] Ota H, Wang X M and Yasukawa E 2004 J. Electrochem. Soc. 151 A427
[19] Harry K J, Hallinan D T, Parkinson D Y, MacDowell A A and Balsara N P 2014 Nat. Mater. 13 69
[1] DFT study of solvation of Li + /Na + in fluoroethylene carbonate/vinylene carbonate/ethylene sulfite solvents for lithium/sodium-based battery
Qi Liu(刘琦), Guoqiang Tan(谭国强), Feng Wu(吴锋), Daobin Mu(穆道斌), and Borong Wu(吴伯荣). Chin. Phys. B, 2021, 30(3): 038203.
[2] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[3] Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading
Zi-Han Liu(刘子涵), Yi-Lan Kang(亢一澜), Hai-Bin Song(宋海滨), Qian Zhang(张茜), and Hai-Mei Xie(谢海妹). Chin. Phys. B, 2021, 30(1): 016201.
[4] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
[5] Design and management of lithium-ion batteries: A perspective from modeling, simulation, and optimization
Qian-Kun Wang(王乾坤), Jia-Ni Shen(沈佳妮), Yi-Jun He(贺益君), Zi-Feng Ma(马紫峰). Chin. Phys. B, 2020, 29(6): 068201.
[6] Understanding the Li diffusion mechanism and positive effect of current collector volume expansion in anode free batteries
Yan Zhuang(庄严), Zheyi Zou(邹喆乂), Bo Lu(吕浡), Yajie Li(李亚捷), Da Wang(王达), Maxim Avdeev, Siqi Shi(施思齐). Chin. Phys. B, 2020, 29(6): 068202.
[7] Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study
Jieyun Zheng(郑杰允), Jialiang Liu(刘家亮), Suijun Wang(王绥军), Fei Luo(罗飞), Liubin Ben(贲留斌), Hong Li(李泓). Chin. Phys. B, 2020, 29(4): 048203.
[8] Computational screening of doping schemes forLiTi2(PO4)3 as cathode coating materials
Yu-Qi Wang(王宇琦), Xiao-Rui Sun(孙晓瑞), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉). Chin. Phys. B, 2020, 29(3): 038202.
[9] Review on electrode-level fracture in lithium-ion batteries
Bo Lu(吕浡), Chengqiang Ning(宁成强), Dingxin Shi(史定鑫), Yanfei Zhao(赵炎翡), Junqian Zhang(张俊乾). Chin. Phys. B, 2020, 29(2): 026201.
[10] Neutron-based characterization techniques for lithium-ion battery research
Enyue Zhao(赵恩岳), Zhi-Gang Zhang(张志刚), Xiyang Li(李西阳), Lunhua He(何伦华), Xiqian Yu(禹习谦), Hong Li(李泓), Fangwei Wang(王芳卫). Chin. Phys. B, 2020, 29(1): 018201.
[11] Parameter identification and state-of-charge estimation approach for enhanced lithium-ion battery equivalent circuit model considering influence of ambient temperatures
Hui Pang(庞辉), Lian-Jing Mou(牟联晶), Long Guo(郭龙). Chin. Phys. B, 2019, 28(10): 108201.
[12] First-principles insight into Li and Na ion storage in graphene oxide
Shu-Ying Zhong(钟淑英), Jing Shi(石晶), Wen-Wei Luo(罗文崴), Xue-Ling Lei(雷雪玲). Chin. Phys. B, 2019, 28(7): 078201.
[13] Artificial solid electrolyte interphase based on polyacrylonitrile for homogenous and dendrite-free deposition of lithium metal
Hang-Yu Xu(徐航宇), Quan Li(李泉), Hong-Yi Pan(潘弘毅), Ji-Liang Qiu(邱纪亮), Wen-Zhuo Cao(曹文卓), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(7): 078202.
[14] Improved electrochemical performance of Li(Ni0.6Co0.2Mn0.2)O2 at high charging cut-off voltage with Li1.4Al0.4Ti1.6(PO4)3 surface coating
Yi Wang(王怡), Bo-Nan Liu(刘柏男), Ge Zhou(周格), Kai-Hui Nie(聂凯会), Jie-Nan Zhang(张杰男), Xi-Qian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(6): 068202.
[15] Influence of carbon coating on the electrochemical performance of SiO@C/graphite composite anode materials
Hao Lu(陆浩), Junyang Wang(汪君洋), Bonan Liu(刘柏男), Geng Chu(褚赓), Ge Zhou(周格), Fei Luo(罗飞), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(6): 068201.
No Suggested Reading articles found!