|
|
Forming solid electrolyte interphase in situ in an ionic conductingLi1.5Al0.5Ge1.5(PO4)3-polypropylene (PP) basedseparator for Li-ion batteries |
Jiao-Yang Wu(吴娇杨)1, Shi-Gang Ling(凌仕刚)1, Qi Yang(杨琪)1, Hong Li(李泓)1, Xiao-Xiong Xu(许晓雄)2, Li-Quan Chen(陈立泉)1 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Ningbo Institute of Material Technology Engineering, Chinese Academy of Sciences, Zhejiang 315201, China |
|
|
Abstract A new concept of forming solid electrolyte interphases (SEI) in situ in an ionic conducting Li1.5Al0.5Ge1.5(PO4)3-polypropylene (LAGP-PP) based separator during charging and discharging is proposed and demonstrated. This unique structure shows a high ionic conductivity, low interface resistance with electrode, and can suppress the growth of lithium dendrite. The features of forming the SEI in situ are investigated by scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). The results confirm that SEI films mainly consist of lithium fluoride and carbonates with various alkyl contents. The cell assembled by using the LAGP-coated separator demonstrates a good cycling performance even at high charging rates, and the lithium dendrites were not observed on the lithium metal electrode. Therefore, the SEI-LAGP-PP separator can be used as a promising flexible solid electrolyte for solid state lithium batteries.
|
Received: 13 April 2016
Revised: 20 April 2016
Accepted manuscript online:
|
PACS:
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
65.40.gk
|
(Electrochemical properties)
|
|
82.45.Fk
|
(Electrodes)
|
|
Fund: Project supported by the Beijing Science and Technology Project, China (Grant No. Z13111000340000), the National Basic Research Program of China (Grant No. 2012CB932900), and the National Natural Science Foundation of China (Grant Nos. 51325206 and 51421002). |
Corresponding Authors:
Hong Li
E-mail: hli@iphy.ac.cn
|
Cite this article:
Jiao-Yang Wu(吴娇杨), Shi-Gang Ling(凌仕刚), Qi Yang(杨琪), Hong Li(李泓), Xiao-Xiong Xu(许晓雄), Li-Quan Chen(陈立泉) Forming solid electrolyte interphase in situ in an ionic conductingLi1.5Al0.5Ge1.5(PO4)3-polypropylene (PP) basedseparator for Li-ion batteries 2016 Chin. Phys. B 25 078204
|
[1] |
Whittingham M S 2008 Mrs Bulletin 33 411
|
[2] |
Arico A S, Bruce P, Scrosati B, Tarascon J M and Van Schalkwijk W 2005 Nat. Mater. 4 366
|
[3] |
Tarascon J M and Armand M 2001 Nature 414 359
|
[4] |
Abraham K M and Jiang Z 1996 J. Electrochem. Soc. 143 1
|
[5] |
Quartarone E, Mustarelli P and Magistris A 1998 Solid State Ion. 110 1
|
[6] |
Masoud E M, El-Bellihi A A, Bayoumy W A and Mousa M A 2013 J. Alloy. Compound. 575 223
|
[7] |
Kim J W, Ji K S, Lee J P and Park J W 2003 J. Power Sources 119 415
|
[8] |
Stephan A M and Nahm K S 2006 Polymer 47 5952
|
[9] |
Choi J H, Lee C H, Yu J H, Doh C H and Lee S M 2015 J. Power Sources 274 458
|
[10] |
Croce F, Appetecchi G B, Persi L and Scrosati B 1998 Nature 394 456
|
[11] |
Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K and Mitsui A 2011 Nat. Mater. 10 682
|
[12] |
Zhao Y, Wu C, Peng G, Chen X, Yao X, Bai Y, Wu F, Chen S and Xu X 2016 J. Power Sources 301 47
|
[13] |
Luo F, Chu G, Xia X, Liu B, Zheng J, Li J, Li H, Gu C and Chen L 2015 Nanoscale 7 7651
|
[14] |
Shi J, Xia Y, Han S, Fang L, Pan M, Xu X and Liu Z 2015 J. Power Sources 273 389
|
[15] |
Wu Y P, Rahm E and Holze R 2003 J. Power Sources 114 228
|
[16] |
Takamura T, Sumiya K, Suzuki J, Yamada C and Sekine K 1999 J. Power Sources 81 368
|
[17] |
Hartmann P, Leichtweiss T, Busche M R, Schneider M, Reich M, Sann J, Adelhelm P and Janek J 2013 J. Phys. Chem. C 117 21064
|
[18] |
Mariappan C R, Yada C, Rosciano F and Roling B 2011 J. Power Sources 196 6456
|
[19] |
Moller K C, Hodal T, Appel W K, Winter M and Besenhard J O 2001 J. Power Sources 97 595
|
[20] |
Lu M, Cheng H and Yang Y 2008 Electrochim. Acta 53 3539
|
[21] |
Lee S H, You H G, Han K S, Kim J, Jung I H and Song J H 2014 J. Power Sources 247 307
|
[22] |
Cannas C, Casu M, Lai A, Musinu A and Piccaluga G 1999 J. Mater. Chem. 9 1765
|
[23] |
Inada R, Ishida K I, Tojo M, Okada T, Tojo T and Sakurai Y 2015 Ceram. Int. 41 11136
|
[24] |
Bettge M, Li Y, Sankaran B, Rago N D, Spila T, Haasch R T, Petrov I and Abraham D P 2013 J. Power Sources 233 346
|
[25] |
Sugimoto T, Kikuta M, Ishiko E, Kono M and Ishikawa M 2008 J. Power Sources 183 436
|
[26] |
Howlett P C, Brack N, Hollenkamp A F, Forsyth M and MacFarlane D R 2006 J. Electrochem. Soc. 153 A595
|
[27] |
Budi A, Basile A, Opletal G, Hollenkamp A F, Best A S, Rees R J, Bhatt A I, O'Mullane A P and Russo S P 2012 J. Phys. Chem. C 116 19789
|
[28] |
Wang X, Xiang J, Wang W, Xiong Y, Zhang J and Zhao C 2015 Appl. Surf. Sci. 357 1857
|
[29] |
Kato K, Kyogoku S, Sakashita M, Takeuchi W, Kondo H, Takeuchi S, Nakatsuka O and Zaima S 2011 Jpn J. Appl. Phys. 50 10PE02
|
[30] |
Aurbach D, Zinigrad E, Teller H, Cohen Y, Salitra G, Yamin H, Dan P and Elster E 2002 J. Electrochem. Soc. 149 A1267
|
[31] |
Miao R, Yang J, Feng X, Jia H, Wang J and Nuli Y 2014 J. Power Sources 271 291
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|