Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 078110    DOI: 10.1088/1674-1056/25/7/078110
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Preparation of silver-coated glass frit and its application in silicon solar cells

Feng Xiang(向锋), Biyuan Li(李碧渊), Yingfen Li(黎应芬), Jian Zhou(周健), Weiping Gan(甘卫平)
School of Material Science and Engineering, Central South University, Changsha 410083, China
Abstract  A simple electroless plating process was employed to prepare silver-coated glass frits for solar cells. The surface of the glass frits was modified with polyvinyl-pyrrolidone (PVP) before the electroless plating process. Infrared (IR) spectroscopy, field emission scanning electron microscopy (FESEM), and x-ray diffraction (XRD) were used to characterize the PVP modified glass frits and investigate the mechanism of the modification process. It was found that the PVP molecules adsorbed on the glass frit surface and reduced the silver ions to the silver nanoparticles. Through epitaxial growth, these nanoparticles were uniformly deposited onto the surface of the glass frit. Silicon solar cells with this novel silver coating exhibited a photoelectric conversion efficiency increase of 0.33%. Compared with the electroless plating processes, this method provides a simple route to prepare silver-coated glass frits without introducing impurity ions.
Keywords:  electroless plating      silver nanoparticle      glass frit      solar cell  
Received:  07 December 2015      Revised:  11 March 2016      Published:  05 July 2016
PACS:  81.15.Pq (Electrodeposition, electroplating)  
  78.56.-a (Photoconduction and photovoltaic effects)  
  73.40.Cg (Contact resistance, contact potential)  
  73.50.-h (Electronic transport phenomena in thin films)  
Corresponding Authors:  Biyuan Li     E-mail:  lylby917@163.com

Cite this article: 

Feng Xiang(向锋), Biyuan Li(李碧渊), Yingfen Li(黎应芬), Jian Zhou(周健), Weiping Gan(甘卫平) Preparation of silver-coated glass frit and its application in silicon solar cells 2016 Chin. Phys. B 25 078110

[1] Saga T 2010 NPG Asia Mater. 2 96
[2] Green M A, Emery K, Hishikawa Y and Warta W 2014 Progress in Photovoltaics: Research and Applications 22 1
[3] Zhang Y F, Liu T, Xue H L, Sun J M and Li H M 2014 Journal of Sichuan Normal University 37 929
[4] Wang W, Winkler M T, Oki G, Gokmen T F, Todorov T K, Zhu Y and Mitzi D 2014 Adv. Energy. Mater. 4 1301465
[5] Yang X L and Deng J X 2012 Physics 41 669
[6] Mohamed M H, Sridharan S, Khadilkad C, Shaikh A, Rohatgi A and Kim S 2006 J. Electronic. Mater. 35 11
[7] Hoornstra J, Schubert G and Broek K 2005 Proc. 31$sh IEEE Photovoltaic Specialists Conference, 2005 Piscataway, America, p. 1293
[8] Gunnar S, Frank H and Peter F 2006 Sol. Energ.Mat. Sol. C 90 3399
[9] Zhou J, Gan W P, Tang H B, Li Y F and Yang C 2014 Appl. Phys. A 118 1371
[10] Chen Y H, Hsu C C and He J L 2013 Surf. Coat. Tech. 232 868
[11] Sehrish S, Ahmad R, Uzma I, Ayub R, Jin W H and Xu R Z 2015 Chin. Phys. B 24 075202
[12] We Q F, Ye H, Hou D Y, Wang H B and Gao W D 2006 J. Appl. Polym. Sci. 99 2384
[13] Elhachmi G T, Hachemi B T and Said B 2015 Chin. Phys. B 24 108202
[14] Bello A, Fabiane M, Dodoo-Arhin D, Ozoemena K I and Manyala N 2014 J. Phys. Chem. Solids 75 109
[15] Xu C J, Zhou R H, Chen H Y, Hou X, Liu G L and Liu Y Q 2014 J. Mater. Sci. Mater. Electron. 25 4638
[16] Yi Z, Xu X B, Fang Q and Wang Y Y 2014 Appl. Phys. A 114 485
[17] Boies A M, Roberts J T, Girshick S T, Zhang B, Nakamura T and Mochizuki A 2009 Nanotechnology 20 295604
[18] Wang W, Li Q and Zhai J P 2013 Surf. Interface. Anal. 45 756
[19] Huang B, Gan W P, Zhou J, Li Y F, Lin T and Liu X G 2014 J. Mater. Sci. Mater. Electron. 43 1326
[20] Li Y F, Gan W P, Zhou J and Li B Y 2015 Appl. Surf. Sci. 341 127
[21] Schaefers S, Rast L and Stanishevsky 2006 Mater. Lett. 60 706
[22] Jiu J T, Tokuno T, Nogi M and Suganuma K 2012 J. Nanopart. Res. 14 975
[23] Che Q D, Yang H X, Lu L and Wang Y H 2013 J. Alloys Compd. 549 221
[24] Wang H S, Qiao X L, Chen J G, Wang X J and Ding S Y 2005 Mater. Chem. Phys. 94 449
[25] Jiu J T, Tokuno T, Nogi M and Suganuma K 2013 J. Nanopart. Res. 15 1588
[26] Huang B, Gan W P, Guo G Q, Li Y F, Lin T and Liu X G 2014 Ceram. Int. 40 393
[27] Wagh M S, Patil R H, Thombre D K, Wasudev K N and Bharat G 2013 Appl. Microbiol. Biotechnol 97 3593
[28] Holzwarth U and Gibson N 2011 Nat. Nanotechnol. 6 534
[29] Caballero L J, Friera P S and Lalaguna B 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion 2 1388
[30] Hong K K, Cho S B, You J S, Jeong J W, Bea S M and Huh J Y 2009 Sol. Energ. Mat. C 93 898
[1] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[2] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[3] SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells
Zerong Liang(梁泽荣), Bingchu Yang(杨兵初), Anyi Mei(梅安意), Siyuan Lin(林思远), Hongwei Han(韩宏伟), Yongbo Yuan(袁永波), Haipeng Xie(谢海鹏), Yongli Gao(高永立), Conghua Zhou(周聪华). Chin. Phys. B, 2020, 29(7): 078401.
[4] Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer
Shixin Hou(侯世欣), Biao Shi(石标), Pengyang Wang(王鹏阳), Yucheng Li(李玉成), Jie Zhang(张杰), Peirun Chen(陈沛润), Bingbing Chen(陈兵兵), Fuhua Hou(侯福华), Qian Huang(黄茜), Yi Ding(丁毅), Yuelong Li(李跃龙), Dekun Zhang(张德坤), Shengzhi Xu(许盛之), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹). Chin. Phys. B, 2020, 29(7): 078801.
[5] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[6] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
[7] Designing solar-cell absorber materials through computational high-throughput screening
Xiaowei Jiang(江小蔚), Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(2): 028803.
[8] A 9% efficiency of flexible Mo-foil-based Cu2ZnSn(S, Se)4 solar cells by improving CdS buffer layer and heterojunction interface
Quan-Zhen Sun(孙全震), Hong-Jie Jia(贾宏杰), Shu-Ying Cheng(程树英), Hui Deng(邓辉)\ccclink, Qiong Yan(严琼), Bi-Wen Duan(段碧雯), Cai-Xia Zhang(张彩霞), Qiao Zheng(郑巧), Zhi-Yuan Yang(杨志远), Yan-Hong Luo(罗艳红), Qing-Bo Men(孟庆波), and Shu-Juan Huang(黄淑娟). Chin. Phys. B, 2020, 29(12): 128801.
[9] Improving the performance of crystalline Si solar cell by high-pressure hydrogenation
Xi-Yuan Dai(戴希远), Yu-Chen Zhang(张宇宸), Liang-Xin Wang(王亮兴), Fei Hu(胡斐), Zhi-Yuan Yu(于志远), Shuai Li(李帅), Shu-Jie Li(李树杰), Xin-Ju Yang(杨新菊), and Ming Lu(陆明). Chin. Phys. B, 2020, 29(11): 118801.
[10] Theoretical investigation of halide perovskites for solar cell and optoelectronic applications
Jingxiu Yang(杨竞秀), Peng Zhang(张鹏), Jianping Wang(王建平), and Su-Huai Wei(魏苏淮)†. Chin. Phys. B, 2020, 29(10): 108401.
[11] The effect of Mn-doped ZnSe passivation layer on the performance of CdS/CdSe quantum dot-sensitized solar cells
Yun-Long Deng(邓云龙), Zhi-Yuan Xu(徐知源), Kai Cai(蔡凯), Fei Ma(马飞), Juan Hou(侯娟), Shang-Long Peng(彭尚龙). Chin. Phys. B, 2019, 28(9): 098802.
[12] The n-type Si-based materials applied on the front surface of IBC-SHJ solar cells
Jianhui Bao(包建辉), Ke Tao(陶科), Yiren Lin(林苡任), Rui Jia(贾锐), Aimin Liu(刘爱民). Chin. Phys. B, 2019, 28(9): 098201.
[13] New design of ferroelectric solar cell combined with luminescent solar concentrator
Slimane Latreche, Mohamed Fathi, Abderrahmane Kadri. Chin. Phys. B, 2019, 28(8): 088801.
[14] Exploring alkylthiol additives in PBDB-T:ITIC blended active layers for solar cell applications
Xiang Li(李想), Zhiqun He(何志群), Mengjie Sun(孙盟杰), Huimin Zhang(张慧敏), Zebang Guo(郭泽邦), Yajun Xu(许亚军), Han Li(李瀚), Chunjun Liang(梁春军), Xiping Jing(荆西平). Chin. Phys. B, 2019, 28(8): 088802.
[15] Surface stabilized cubic phase of CsPbI3 and CsPbBr3 at room temperature
Feng Yang(杨凤), Cong Wang(王聪), Yuhao Pan(潘宇浩), Xieyu Zhou(周谐宇), Xianghua Kong(孔祥华), Wei Ji(季威). Chin. Phys. B, 2019, 28(5): 056402.
No Suggested Reading articles found!