Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077403    DOI: 10.1088/1674-1056/25/7/077403
Special Issue: Virtual Special Topic — High temperature superconductivity
RAPID COMMUNICATION Prev   Next  

Multiband nodeless superconductivity near the charge-density-wave quantum critical point in ZrTe3-xSex

Shan Cui(崔珊)1, Lan-Po He(何兰坡)1, Xiao-Chen Hong(洪晓晨)1, Xiang-De Zhu(朱相德)2,4, Cedomir Petrovic4, Shi-Yan Li(李世燕)1,3
1 State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China;
2 High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei 230031, China;
3 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China;
4 Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
Abstract  

It was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk superconductivity in ZrTe3. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe3-xSex near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe3-xSex single crystals (x = 0.044 and 0.051) down to 80 mK. For both samples, the residual linear term κ0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of κ0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe3-xSex, which indicates conventional superconductivity despite of the existence of a CDW QCP.

Keywords:  superconductivity      charge-density-wave order      thermal transport measurement      gap structure  
Received:  19 May 2016      Published:  05 July 2016
PACS:  74.25.fc (Electric and thermal conductivity)  
  74.40.Kb (Quantum critical phenomena)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.25.Op (Mixed states, critical fields, and surface sheaths)  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821402 and 2015CB921401), the National Natural Science Foundation of China (Grant Nos. 91421101, 11422429, and 11204312), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China, and STCSM of China (Grant No. 15XD1500200). Work at Brookhaven National Laboratory was supported by the US DOE under Contract No. DESC00112704.

Corresponding Authors:  Shi-Yan Li     E-mail:  shiyan_li@fudan.edu.cn

Cite this article: 

Shan Cui(崔珊), Lan-Po He(何兰坡), Xiao-Chen Hong(洪晓晨), Xiang-De Zhu(朱相德), Cedomir Petrovic, Shi-Yan Li(李世燕) Multiband nodeless superconductivity near the charge-density-wave quantum critical point in ZrTe3-xSex 2016 Chin. Phys. B 25 077403

[1] Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117
[2] Kim S J, Park S J, Jeon I C, Kim C H, Pyun C H and Yee K A 1997 J. Phys. Chem. Solids 58 659
[3] Di Salvo F J, Moncton D E and Waszczak J V 1976 Phys. Rev. B 14 4321
[4] Boswell F and Bennett J C 1996 Mater. Res. Bull. 31 1083
[5] Morosan E, Zandbergen H W, Dennis B S, Bos J W G, Onose Y, Klimczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys. 2 544
[6] Kusmartseva A F, Sipos B, Berger H, Forro L and Tutis E 2009 Phys. Rev. Lett. 103 236401
[7] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L and Tutis E 2008 Nat. Mater. 7 960
[8] Hoesch M, Garbarino G, Battaglia C, Aebi P and Berger H 2016 Phys. Rev. B 93 125102
[9] Norman M R 2011 Science 332 196
[10] Yamaya K, Takayanagi S and Tanda S 2012 Phys. Rev. B 85 184513
[11] Furuseth S, Brattas L and Kjekshus A 1975 Acta Chem. Scand. A 29 623
[12] Eaglesham D J, Steeds J W and Wilson J A 1984 J. Phys. C: Solid State Phys. 17 L697
[13] Zhu X D, Lei H C and Petrovic C 2011 Phys. Rev. Lett. 106 246404
[14] Lei H C, Zhu X D and Petrovic C 2011 Europhys. Lett. 95 17011
[15] Yamaya K, Yoneda M, Yasuzuka S, Okajima Y and Tanda S 2002 J. Phys.: Condens. Matter 14 10767
[16] Zhu X Y, Lv B, Wei F Y, Xue Y Y, Lorenz B, Deng L Z, Sun Y Y and Chu C W 2013 Phys. Rev. B 87 024508
[17] Zhu X D, Ning W, Li L J, Ling L S, Zhang R R, Wang K F, Liu Y, Pi L, Ma Y C, Du H F, Tian M L, Sun Y P, Petrovic C and Zhang Y H 2016 Sci. Rep. accepted
[18] Shakeripour H, Petrovic C and Taillefer L 2009 New J. Phys. 11 055065
[19] Sutherland M, Hawthorn D G, Hill R W, Ronning F, Wakimoto S, Zhang H, Proust C, Boaknin E, Lupien C and Taillefer L 2003 Phys. Rev. B 67 174520
[20] Li S Y, Bonnemaison J B, Payeur A, Fournier P, Wang C H, Chen X H and Taillefer L 2008 Phys. Rev. B 77 134501
[21] Proust C, Boaknin E, Hill R W, Taillefer L and Mackenzie A P 2002 Phys. Rev. Lett. 89 147003
[22] Suzuki M, Tanatar M A, Kikugawa N, Mao Z Q, Maeno Y and Ishiguro T 2002 Phys. Rev. Lett. 88 227004
[23] Lowell J and Sousa J B 1970 J. Low. Temp. Phys. 3 65
[24] Boaknin E, Tanatar M A, Paglione J, Hawthorn D, Ronning F, Hill R W, Sutherland M, Taillefer L, Sonier J, Hayden S M and Brill J W 2003 Phys. Rev. Lett. 90 117003
[25] Scalapino D J, Loh E and Hirsch J E 1987 Phys. Rev. B 35 6694
[26] Merino J and McKenzie R H 2001 Phys. Rev. Lett. 87 237002
[27] Li S Y, Wu G, Chen X H and Taillefer L 2007 Phys. Rev. Lett. 99 107001
[1] Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn 2
Meng-Di Zhang(张孟迪), Sheng Xu(徐升), Xing-Yuan Hou(侯兴元), Ya-Dong Gu(谷亚东), Fan Zhang(张凡), Tian-Long Xia(夏天龙), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富), Ning Hao(郝宁), and Lei Shan(单磊). Chin. Phys. B, 2021, 30(1): 017304.
[2] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[3] Flattening is flattering: The revolutionizing 2D electronic systems
Baojuan Dong(董宝娟), Teng Yang(杨腾), Zheng Han(韩拯). Chin. Phys. B, 2020, 29(9): 097307.
[4] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[5] Anisotropy of Ca0.73La0.27(Fe0.96Co0.04)As2 studied by torque magnetometry
Ya-Lei Huang(黄亚磊), Run Yang(杨润), Pei-Gang Li(李培刚), Hong Xiao(肖宏). Chin. Phys. B, 2020, 29(9): 097405.
[6] Electrical and thermoelectric study of two-dimensional crystal of NbSe2
Xin-Qi Li(李新祺), Zhi-Lin Li(李治林), Jia-Ji Zhao(赵嘉佶), Xiao-Song Wu(吴孝松). Chin. Phys. B, 2020, 29(8): 087402.
[7] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[8] Time-dependent Ginzburg-Landau equations for multi-gap superconductors
Minsi Li(李敏斯), Jiahong Gu(古家虹), Long Du(杜龙), Hongwei Zhong(钟红伟), Lijuan Zhou(周丽娟), Qinghua Chen(陈庆华). Chin. Phys. B, 2020, 29(3): 037401.
[9] A simple tight-binding approach to topological superconductivity in monolayer MoS2
H Simchi. Chin. Phys. B, 2020, 29(2): 027401.
[10] Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals
He Li(李贺), Ming-Wei Ma(马明伟), Shao-Bo Liu(刘少博), Fang Zhou(周放), and Xiao-Li Dong(董晓莉). Chin. Phys. B, 2020, 29(12): 127404.
[11] A review of experimental advances in twisted graphene moirè superlattice
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yalong Yuan(袁亚龙), Cheng Shen(沈成), Rong Yang(杨蓉), Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2020, 29(12): 128104.
[12] Superconductivity in twisted multilayer graphene: A smoking gun in recent condensed matter physics
Yonghuan Chu(楚永唤), Fangduo Zhu(朱方铎), Lingzhi Wen(温凌志), Wanying Chen(陈婉莹), Qiaoni Chen(陈巧妮), and Tianxing Ma(马天星). Chin. Phys. B, 2020, 29(11): 117401.
[13] Twistronics in graphene-based van der Waals structures
Ya-Ning Ren(任雅宁), Yu Zhang(张钰), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2020, 29(11): 117303.
[14] Possible nodeless s±-wave superconductivity in twisted bilayer graphene
Zhe Liu(刘哲), Yu Li(李宇), Yi-Feng Yang(杨义峰). Chin. Phys. B, 2019, 28(7): 077103.
[15] Enhancing superconductivity of ultrathin YBa2Cu3O7-δ films by capping non-superconducting oxides
Hai Bo(薄海), Tianshuang Ren(任天爽), Zheng Chen(陈峥), Meng Zhang(张蒙), Yanwu Xie(谢燕武). Chin. Phys. B, 2019, 28(6): 067402.
No Suggested Reading articles found!