Special Issue:
Virtual Special Topic — High temperature superconductivity
|
|
|
Synthesis of large FeSe superconductor crystals via ion release/introduction and property characterization |
Dongna Yuan(苑冬娜)1, Yulong Huang(黄裕龙)1, Shunli Ni(倪顺利)1, Huaxue Zhou(周花雪)1, Yiyuan Mao(毛义元)1, Wei Hu(胡卫)1, Jie Yuan(袁洁)1, Kui Jin(金魁)1,2, Guangming Zhang(张广铭)3, Xiaoli Dong(董晓莉)1,2, Fang Zhou(周放)1,2 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China |
|
|
Abstract Large superconducting FeSe crystals of (001) orientation have been prepared via a hydrothermal ion release/introduction route for the first time. The hydrothermally derived FeSe crystals are up to 10 mm×5 mm×0.3 mm in dimension. The pure tetragonal FeSe phase has been confirmed by x-ray diffraction (XRD) and the composition determined by both inductively coupled plasma atomic emission spectroscopy (ICP-AES) and energy dispersive x-ray spectroscopy (EDX). The superconducting transition of the FeSe samples has been characterized by magnetic and transport measurements. The zero-temperature upper critical field Hc2 is calculated to be 13.2-16.7 T from a two-band model. The normal-state cooperative paramagnetism is found to be predominated by strong spin frustrations below the characteristic temperature Tsn, where the Ising spin nematicity has been discerned in the FeSe superconductor crystals as reported elsewhere.
|
Received: 25 May 2016
Revised: 30 May 2016
Accepted manuscript online:
|
PACS:
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
74.25.Op
|
(Mixed states, critical fields, and surface sheaths)
|
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574370, 11274358, and 11190020), the National Basic Research Program of China (Grant No. 2013CB921700), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100). |
Corresponding Authors:
Xiaoli Dong, Fang Zhou
E-mail: dong@iphy.ac.cn;fzhou@iphy.ac.cn
|
Cite this article:
Dongna Yuan(苑冬娜), Yulong Huang(黄裕龙), Shunli Ni(倪顺利), Huaxue Zhou(周花雪), Yiyuan Mao(毛义元), Wei Hu(胡卫), Jie Yuan(袁洁), Kui Jin(金魁), Guangming Zhang(张广铭), Xiaoli Dong(董晓莉), Fang Zhou(周放) Synthesis of large FeSe superconductor crystals via ion release/introduction and property characterization 2016 Chin. Phys. B 25 077404
|
[1] |
Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. US A 105 14262
|
[2] |
Mcqueen T M, Huang Q, Ksenofontov V, Felser C, Xu Q, Zandbergen H, Hor Y S, Allred J, Williams A J, Qu D, Checkelsky J, Ong N P and Cava R J 2009 Phys. Rev. B 79 014522
|
[3] |
Medvedev S, Mcqueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G and Felser C 2009 Nat. Mater. 8 630
|
[4] |
Bendele M, Amato A, Conder K, Elender M, Keller H, Klauss H H, Luetkens H, Pomjakushina E, Raselli A and Khasanov R 2010 Phys. Rev. Lett. 104 087003
|
[5] |
Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G and Shibauchi T 2015 arXiv1512.06951
|
[6] |
Terashima T, Kikugawa N, Kasahara S, Watashige T, Matsuda Y, Shibauchi T and Uji S 2016 arXiv1603.03487
|
[7] |
Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z and Chen X H 2016 Phys. Rev. Lett. 116 077002
|
[8] |
Böhmer A E and Meingast C 2015 arXiv1505.05120
|
[9] |
Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M and Valenti R 2015 Nat. Phys. 11 953
|
[10] |
Chubukov A V, Fernandes R M and Schmalian J 2015 Phys. Rev. B 91 201105
|
[11] |
Chubukov A V, Khodas M and Fernandes R M 2016 arXiv1602.05503
|
[12] |
Rahn M C, Ewings R A, Sedlmaier S J, Clarke S J and Boothroyd A T 2015 Phys. Rev. B 91 180501
|
[13] |
Wang Q, Shen Y, Pan B, Zhang X, Ikeuchi K, Iida K, Christianson A D, Walker H C, Adroja D T, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N and Zhao J 2015 arXiv1511.02485
|
[14] |
Wang Q S, Shen Y, Pan B Y, Hao Y Q, Ma M W, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X J, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H B and Zhao J 2016 Nat. Mater. 15 159
|
[15] |
Shimojima T, Suzuki Y, Sonobe T, Nakamura A, Sakano M, Omachi J, Yoshioka K, Kuwata Gonokami M, Ono K, Kumigashira H, Böhmer A E, Hardy F, Wolf T, Meingast C, Löhneysen H v, Ikeda H and Ishizaka K 2014 Phys. Rev. B 90 121111
|
[16] |
Baek S H, Efremov D V, Ok J M, Kim J S, Van Den Brink J and Buchner B 2015 Nat. Mater. 14 210
|
[17] |
Yuan D N, Yuan J, Huang Y L, Ni S L, Feng Z P, Zhou H X, Mao Y Y, Jin K, Zhang G M, Dong X L, Zhou F and Zhao Z X 2016 arXiv:1605.01507
|
[18] |
Ma M W, Yuan D N, Wu Y, Zhou H X, Dong X L and Zhou F 2014 Supercond. Sci. Technol. 27 122001
|
[19] |
Zhang S B, Sun Y P, Zhu X D, Zhu X B, Wang B S, Li G, Lei H C, Luo X, Yang Z R, Song W H and Dai J M 2009 Supercond. Sci. Technol. 22 015020
|
[20] |
Chareev D, Osadchii E, Kuzmicheva T, Lin J Y, Kuzmichev S, Volkova O and Vasiliev A 2013 Cryst. Eng. Commun. 15 1989
|
[21] |
Rao S M, Mok B H, Ling M C, Ke C T, Chen T C, Tsai I M, Lin Y L, Liu H L, Chen C L, Hsu F C, Huang T W, Wu T B and Wu M K 2011 J. Appl. Phys. 110 113919
|
[22] |
Ma M W, Yuan D N, Wu Y, Dong X L and Zhou F 2014 Phys. C 506 154
|
[23] |
Hu R W, Lei H C, Abeykoon M, Bozin E S, Billinge S J L, Warren J B, Siegrist T and Petrovic C 2011 Phys. Rev. B 83 224502
|
[24] |
Koz C, Schmidt M, Borrmann H, Burkhardt U, Rößler S, Carrillo Cabrera W, Schnelle W, Schwarz U and Grin Y 2014 Z. Anorg. Allg. Chem. 640 1600
|
[25] |
Patel U, Hua J, Yu S H, Avci S, Xiao Z L, Claus H, Schlueter J, Vlasko-Vlasov V V, Welp U and Kwok W K 2009 Appl. Phys. Lett. 94 082508
|
[26] |
Karlsson S, Strobel P, Sulpice A, Marcenat C, Legendre M, Gay F, Pairis S, Leynaud O and Toulemonde P 2015 Supercond. Sci. Technol. 28 105009
|
[27] |
Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F and Zhao Z X 2015 Phys. Rev. B 92 064515
|
[28] |
Gurevich A 2003 Phys. Rev. B 67 184515
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|