Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077303    DOI: 10.1088/1674-1056/25/7/077303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of disorders on topological phases inone-dimensional optical superlattices

Zhizhou Wang(王志宙), Yidong Wu(吴一东), Huijing Du(杜会静), Xili Jing(井西利)
School of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  In a recent paper, Lang et al. proposed that edge states and topological phases can be observed in one-dimensional optical superlattices. They showed that the topological phases can be revealed by observing the density profile of a trapped fermion system, which displays plateaus with their positions. However, disorders are not considered in their model. To study the effect of disorders on the topological phases, we introduce random potentials to the model for optical superlattcies. Our calculations show that edge states are robust against the disorders. We find the edge states are very sensitive to the number of the sites in the optical superlattice and we propose a simple rule to describe the relationship between the edge states and the number of sites. The density plateaus are also robust against weak disorders provided that the average density is calculated over a long interval. The widths of the plateaus are proportional to the widths of the bulk energy gaps when there are disorders. The disorders can diminish the bulk energy gaps. So the widths of the plateaus decrease with the increase of disorders and the density plateaus disappear when disorders are too strong. The results in our paper can be used to guide the experimental detection of topological phases in one-dimensional systems.
Keywords:  edge state      topological phase      optical superlattices  
Received:  17 February 2016      Revised:  16 March 2016      Published:  05 July 2016
PACS:  73.21.Cd (Superlattices)  
  05.30.Fk (Fermion systems and electron gas)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 41174116), the Graduate Student Education Teaching Reform Project, China (Grant No. JG201512), and the Young Teachers' Research Project of Yanshan University, China (Grant No. 13LGB028).
Corresponding Authors:  Yidong Wu, Huijing Du     E-mail:  wuyidong@ysu.edu.cn;hjdu@ysu.edu.cn

Cite this article: 

Zhizhou Wang(王志宙), Yidong Wu(吴一东), Huijing Du(杜会静), Xili Jing(井西利) Effect of disorders on topological phases inone-dimensional optical superlattices 2016 Chin. Phys. B 25 077303

[1] Laughlin R B 1981 Phys. Rev. B 23 5632
[2] Thouless D J, Kohmoto M, Nightingale M P and Nijs M D 1982 Phys. Rev. Lett. 49 405
[3] Avron J E, Seiler R and Simon B 1983 Phys. Rev. Lett. 51 51
[4] Haldane F D M 2004 Phys. Rev. Lett. 93 206602
[5] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[6] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[7] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[8] Lu Q, Zhang H Y, Cheng Y, Chen X R and Ji G F 2016 Chin. Phys. Lett. 33 027303
[9] Wu X G 2016 Chin. Phys. B 25 026401
[10] Nie S, Xu X Y, Xu G and Fang Z 2016 Chin. Phys. B 25 037311
[11] Shao H H, Liu Y M, Zhou X Y and Zhou G H 2016 Chin. Phys. B 23 107304
[12] Fidkowski L, Jackson T S and Klich I 2011 Phys. Rev. Lett. 107 036601
[13] Umucallar R O, Zhai H and Oktel M Ö 2008 Phys. Rev. Lett. 100 070402
[14] Stanescu T D, Galitski V and Das Sarma S 2010 Phys. Rev. A 82 013608
[15] Béri B and Cooper N R 2011 Phys. Rev. Lett. 107 145301
[16] Lang L J, Cai X and Chen S 2012 Phys. Rev. Lett. 108 220401
[17] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[18] Sheng D N, Weng Z Y, Sheng L and Haldane F D M 2006 Phys. Rev. Lett. 97 036808
[19] Roati G, Errico C D, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895
[20] Deissler B, Zaccanti M, Roati G, Errico C D, Fattori M, Modugno M, Modugno G and Inguscio M 2010 Nat. Phys. 6 354
[21] Aubry S and André G 1980 Ann. Isr. Phys. Soc. 3 133
[22] Anderson P W 1958 Phys. Rev. 109 1492
[23] Hatsugai Y 1993 Phys. Rev. B 48 11851
[24] Hatsugai Y 1993 Phys. Rev. Lett. 71 3697
[25] Niu Q, Thouless D J and Wu Y S 1985 Phys. Rev. B 31 3372
[26] Cai X, Chen S and Wang Y 2011 Phys. Rev. A 83 043613
[1] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
[2] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[3] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔)†. Chin. Phys. B, 2020, 29(10): 104302.
[4] Acoustic topological phase transition induced by band inversion of high-order compound modes and robust pseudospin-dependent transport
Yan Li(李妍)†, Yi-Nuo Liu(刘一诺), and Xia Zhang(张霞). Chin. Phys. B, 2020, 29(10): 106301.
[5] Neutral excitation and bulk gap of fractional quantum Hall liquids in disk geometry
Wu-Qing Yang(杨武庆), Qi Li(李骐), Lin-Peng Yang(杨林鹏), Zi-Xiang Hu(胡自翔). Chin. Phys. B, 2019, 28(6): 067303.
[6] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[7] Coulomb-dominated oscillations in a graphene quantum Hall Fabry-Pérot interferometer
Guan-Qun Zhang(张冠群), Li Lin(林立), Hailin Peng(彭海琳), Zhongfan Liu(刘忠范), Ning Kang(康宁), Hong-Qi Xu(徐洪起). Chin. Phys. B, 2019, 28(12): 127203.
[8] Topological phases of a non-Hermitian coupled SSH ladder
J S Liu(刘建森), Y Z Han(韩炎桢), C S Liu(刘承师). Chin. Phys. B, 2019, 28(10): 100304.
[9] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
[10] Topological phase diagrams and Majorana zero modes of the Kitaev ladder and tube
Yiming Wang(王一鸣), Zhidan Li(李志聃), Qiang Han(韩强). Chin. Phys. B, 2018, 27(4): 047401.
[11] Distinct edge states and optical conductivities in the zigzag and armchair silicene nanoribbons under exchange and electric fields
Jianfei Zou(邹剑飞), Jing Kang(康静). Chin. Phys. B, 2018, 27(3): 037301.
[12] Novel conductance step in carbon nanotube with wing-like zigzag graphene nanoribbons
Hong Liu(刘红). Chin. Phys. B, 2017, 26(11): 116101.
[13] Band structure and edge states of star-like zigzag graphene nanoribbons
Hong Liu(刘红). Chin. Phys. B, 2017, 26(11): 117301.
[14] Topological phase in one-dimensional Rashba wire
Sa-Ke Wang(汪萨克), Jun Wang(汪军), Jun-Feng Liu(刘军丰). Chin. Phys. B, 2016, 25(7): 077305.
[15] Electronic properties and topological phases of ThXY (X=Pb, Au, Pt and Y= Sb, Bi, Sn) compounds
Zahra Nourbakhsh, Aminollah Vaez. Chin. Phys. B, 2016, 25(3): 037101.
No Suggested Reading articles found!