Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077302    DOI: 10.1088/1674-1056/25/7/077302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Strain-induced insulator-metal transition in ferroelectric BaTiO3 (001) surface: First-principles study

Lin Yang(杨林)1, Chang-An Wang(王长安)1, Cong Liu(刘聪)1, Ming-Hui Qin(秦明辉)1, Xu-Bing Lu(陆旭兵)1, Xing-Sen Gao(高兴森)1, Min Zeng(曾敏)1, Jun-Ming Liu(刘俊明)1,2
1 Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China;
2 National Laboratory of Solid State Microstructures and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  The electronic properties of TiO2-terminated BaTiO3 (001) surface subjected to biaxial strain have been studied using first-principles calculations based on density functional theory. The Ti ions are always inward shifted either at compressive or tension strains, while the inward shift of the Ba ions occurs only for high compressive strain, implying an enhanced electric dipole moment in the case of high compressive strain. In particular, an insulator-metal transition is predicted at a compressive biaxial strain of 0.0475. These changes present a very interesting possibility for engineering the electronic properties of ferroelectric BaTiO3 (001) surface.
Keywords:  first-principles      ferroelectricity      insulator-metal transition      strain-induced effect  
Received:  28 October 2015      Revised:  26 March 2016      Published:  05 July 2016
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  73.20.At (Surface states, band structure, electron density of states)  
  77.55.fe (BaTiO3-based films)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 1574091, 51272078, and 51431006), the Natural Science Foundation of Guangdong Province of China (Grant No. 2015A030313375), the Science and Technology Planning Project of Guangdong Province of China (Grant No. 2015B090927006), and the Program for International Innovation Cooperation Platform of Guangzhou City, China (Grant No. 2014J4500016).
Corresponding Authors:  Min Zeng     E-mail:  zengmin@scnu.edu.cn

Cite this article: 

Lin Yang(杨林), Chang-An Wang(王长安), Cong Liu(刘聪), Ming-Hui Qin(秦明辉), Xu-Bing Lu(陆旭兵), Xing-Sen Gao(高兴森), Min Zeng(曾敏), Jun-Ming Liu(刘俊明) Strain-induced insulator-metal transition in ferroelectric BaTiO3 (001) surface: First-principles study 2016 Chin. Phys. B 25 077302

[1] Scott J F 2000 Ferroelectric Memories (Springer: Berlin) p. 247
[2] Park K I, Xu S, Liu Y, Hwang G T, Kang S J L, Wang Z L and Lee K J 2010 Nano Lett. 10 4939
[3] Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y B, Pan X Q, Gopalan V, Chen L Q, Schlom D G and Eom C B 2004 Science 5 1005
[4] Lee H N, Christen H M, Chisholm M F, Rouleau C M and Lowndes D H 2005 Nature 433 395
[5] Kreisel J, Weber M C, Dix N, Sanchez F, Thomas P A and Fontcuberta J 2012 Adv. Funct. Mater. 22 5044
[6] Wen Z, Li C, Wu D, Li A D and Ming N B 2013 Nat. Mater. 12 617
[7] Meyerheim H L, Klimenta F, Ernst A, Mohseni K, Ostanin S, Fechner M, Parihar S, Maznichenko I V, Mertig I and Kirschner J 2011 Phys. Rev. Lett. 106 087203
[8] Plodinec M, Santic A, Zavasnik J, Ceh M and Gajovic A 2014 Appl. Phys. Lett. 105 152101
[9] Li C J, Huang L S, Li T, Lu W M, Qiu X P, Huang Z, Liu Z Q, Zeng S W, Guo R, Zhao Y L, Zeng K Y, Coey J M D, Chen J S, Ariando and Venkatesan T 2015 Nano Lett. 15 2568
[10] Chen J P, Luo Y, Ou X, Yuan G L, Wang Y P, Yang Y, Yin J and Liu Z G 2013 J. Appl. Phys. 113 204105
[11] Cai M Q, Du Y and Huang B Y 2011 Appl. Phys. Lett. 98 102907
[12] Stengel M, Vanderbilt D and Spaldin N A 2009 Nat. Mater. 8 392
[13] Lu H, Liu X, Burton J D, Bark C W, Wang Y, Zhang Y, Kim D J, Stamm A, Lukashev P, Felker D A, Folkman C M, Gao P, Rzchowski M S, Pan X Q, Eom C B, Tsymbal E Y and Gruverman A 2012 Adv. Mater. 24 1209
[14] Damodaran A R, Breckenfeld E, Chen Z H, Lee S K and Martin L W 2014 Adv. Mater. 26 6341
[15] Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J and Schlom D G 2004 Nature 430 758
[16] Lee D, Lu H, Gu Y, Choi S Y, Li S D, Ryu S, Paude T R, Song K, Mikheev E, Lee S, Stemmer S, Tenne D A, Oh S H, Tsymba E Y, Wu X, Chen L Q, Gruverman A and Eom C B 2015 Science 349 1314
[17] Paul J, Nishimatsu T, Kawazoe Y and Waghmare U V 2007 Phys. Rev. Lett. 99 077601
[18] Schilling A, Prosandeev S, McQuaid R G P, Bellaiche L, Scott J F and Gregg J M 2011 Phys. Rev. B 84 064110
[19] Hirai K, Kan D, Ichikawa N, Mibu K, Yoda Y, Andreeva M and Shimakawa Y 2015 Sci. Rep. 5 7894
[20] Dieguez O, Rabe K M and Vanderbilt D 2005 Phys. Rev. B 72 144101
[21] Yang Q, Cao J X, Ma Y, Zhou Y C, Lou X J and Yang J 2013 J. Appl. Phys. 114 034109
[22] Yang Q, Cao J X, Zhou Y C, Zhang Y, Ma Y and Lou X J 2013 Appl. Phys. Lett. 103 142911
[23] Tenne D A, Turner P, Schmidt J D, Biegalski M, Li Y L, Chen L Q, Soukiassian A, Trolier-McKinstry S, Schlom D G, Xi X X, Fong D D, Fuoss P H, Eastman J A, Stephenson G B, Thompson C and Streiffer S K 2009 Phys. Rev. Lett. 103 177601
[24] Shin J, Nascimento V B, Borisevich A Y, Plummer E W, Kalinin S V and Baddorf A P 2008 Phys. Rev. B 77 245437
[25] Meyerheim H L, Ernst A, Mohseni K, Maznichenko I V, Ostanin S, Klimenta F, Jedrecy N, Feng W, Mertig I, Felici R and Kirschner J 2012 Phys. Rev. Lett. 108 215502
[26] Iles N, Driss K K, Kellou A and Aubert P 2014 Comp. Mater. Sci. 87 123
[27] Fechner M, Ostanin S and Mertig I 2008 Phys. Rev. B 77 094112
[28] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[29] Gajdos M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112
[30] Li Y L, Yu R, Shi T, Liao Z Y, Song D S, Zhou H H, Cheng Z Y and Zhu J 2015 J. Phys.: Condens. Matter 27 095901
[31] Tian X B, Yang X H and Cao W Z 2013 J. Eelectron. Mater. 42 2504
[32] Ni L H, Liu Y, Ren Z H, Song C L and Han G R 2011 Chin. Phys. B 20 106102
[33] Rodin A S, Carvalho A and Castro Neto A H 2014 Phys. Rev. Lett. 112 176801
[34] Torre A L, Botello-Mendez A, Baaziz W, Charlier J C and Banhart F 2015 Nat. Commun. 6 6636
[35] Chen Z P, He J J, Zhou P, Na J and Sun L Z 2015 Comp. Mater. Sci. 110 102
[1] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[2] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[3] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[4] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[5] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[6] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[7] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[8] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[9] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[10] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[11] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[12] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[13] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[14] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[15] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
No Suggested Reading articles found!