Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 076107    DOI: 10.1088/1674-1056/25/7/076107
Special Issue: TOPICAL REVIEW — High pressure physics
TOPICAL REVIEW—High pressure physics Prev   Next  

High pressure structural phase transitions of TiO2 nanomaterials

Quan-Jun Li(李全军), Bing-Bing Liu(刘冰冰)
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China

Recently, the high pressure study on the TiO2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO2-B nanoribbons. Various TiO2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO2 nanoribbons, α -PbO2-type TiO2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications.

Keywords:  high pressure      nanomaterials      phase transition      TiO2  
Received:  05 June 2015      Revised:  02 July 2015      Published:  05 July 2016
PACS:  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  

Project supported by the National Basic Research Program of China (Grant No. 2011CB808200), the National Natural Science Foundation of China (Grant Nos. 11374120, 11004075, 10979001, 51025206, 51032001, and 21073071), and the Cheung Kong Scholars Programme of China.

Corresponding Authors:  Bing-Bing Liu     E-mail:

Cite this article: 

Quan-Jun Li(李全军), Bing-Bing Liu(刘冰冰) High pressure structural phase transitions of TiO2 nanomaterials 2016 Chin. Phys. B 25 076107

[1] Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M and Lu G Q 2008 Nature 453 638
[2] Etgar L, Zhang W, Gabriel S, Hickey S G, Nazeeruddin M K, Eychmuller A, Liu B and Gratzel M 2012 Adv. Mater. 24 2202
[3] Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y 2001 Science 293 269
[4] Chen X and Mao S S 2007 Chem. Rev. 107 2891
[5] Chen X B, Liu L and Huang F Q 2015 Chem. Rev. 44 1861
[6] Arlt T, Bermejo M, Blanco M A, Gerward L, Jiang J Z, Staun Olsen J, Recio J M and Recio J M 2000 Phys. Rev. B 61 14414
[7] Lagarec K and Desgreniers S 1995 Solid State Commun. 94 519
[8] Gerward L and Staun Olsen J 1997 J. Appl. Cryst. 30 259
[9] Dubrovinsky L S, Dubrovinskaia N A, Swamy V. Muscat J, Harrison N M, Ahuja R, Holm B and Johansson B 2001 Nature 410 653
[10] Swamy V and Muddle B C 2007 Phys. Rev. Lett. 98 035502
[11] Swamy V, Kuznetsov A, Dubrovinsky L S, Caruso R A, Shchukin D G and Muddle B C 2005 Phys. Rev. B 71 184302
[12] Hearne G R, Zhao J, Dawe A M, Pischedda V, Maaza M, Nieuwoudt M K, Kibasomba P, Nemraoui O, Comins J D and Witcomb M J 2004 Phys. Rev. B 70 134102
[13] Arlt T, Bermejo M, Blanco M A, Gerward L, Jiang J Z, Staun Olsen J, Recio J M and Recio J M 2000 Phys. Rev. B 61 14414
[14] Pischedda V, Hearne G R, Dawe A M and Lowther J E 2006 Phys. Rev. Lett. 96 035509
[15] Swamy V, Kuznetsov A, Dubrovinsky L S, McMillan P F, Prakapenka V B, Shen G Y and Muddle B C 2006 Phys. Rev. Lett. 96 135702
[16] Flank A M, Lagarde P, Itie J P, Polian A and Hearne G R 2008 Phys. Rev. B 77 224112
[17] Park S, Jang J, Cheon J, Lee H H, Lee D R and Lee Y 2008 J. Phys. Chem. C 112 9627
[18] Li Q J, Cheng B Y, Yang X, Liu R, Liu B, Liu J, Chen Z Q, Zou B, Cui T and Liu B B 2013 J. Phys. Chem. C 117 8516
[19] Dong Z H and Song Y 2015 Can. J. Chem. 93 165
[20] Li Q J, Cheng B Y, Tian B L, Liu R, Liu B, Wang F, Chen Z Q, Zou B, Cui T and Liu B B 2014 RSC Adv. 4 12873
[21] Li Q J, Liu B B, Wang L, Li D M, Liu R, Zou B, Cui T, Zou G T, Meng Y, Mao H K, Liu Z X, Liu J and Li J X 2010 J. Phys. Chem. Lett. 1 309
[22] Wang Z W, Saxena S K, Pischedda V, Liermann H P and Zha C S 2001 J. Phys.: Condens. Matter 13 8317
[23] Gerward L and Olsen J S 1997 J. Appl. Crystallogr. 30 259
[24] Jamieson J C and Olinger B 1968 Science 161 893
[25] Sasaki T 2002 J. Phys.: Condens. Matter 14 10557
[26] Montanari B and Harrison N M 2004 J. Phys.: Condens. Matter 16 273
[27] Wu X, Holbig E and Steinle-Neumann G 2010 J. Phys.: Condens. Matter 22 295501
[28] He Y, Liu J F, Chen W, Wang H, Zeng Y W, Zhang G Q, Wang L N, Liu J, Hu T D, Hahn H, Gleiter H and Jiang J Z 2005 Phys. Rev. B 72 212102
[29] Wu H M, Wang Z W and Fan H Y 2014 JACS 136 7634
[30] Quan Z W, Luo Z P, Wang Y X, Xu H W, Wang C Y, Wang Z W and Fang J Y 2013 Nano Lett. 13 3729
[31] Swamy V, Dubrovinsky L S, Dubrovinskaia N A, Langenhorst F, Simionovici A S, Drakopoulos M, Dmitriev V and Weber H P 2003 Solid State Commun. 125 111
[32] Al-Khatatbeh Y, Lee K K M and Kiefer B 2012 J. Phys. Chem. C 116 21635
[33] Machon D, Daniel M, Bouvier P, Daniele S, Floch S L, Melinon P and Pischedda V 2011 J. Phys. Chem. C 115 22286
[34] Mishima O, Calvert L D and Whalley E 1984 Nature 310 393
[35] Deb S K, Wilding M, Somayazulu M and McMillan P F 2001 Nature 414 528
[36] Hemley R J, Jephcoat A P, Mao H K, Ming L C and Manghnan M H 1988 Nature 334 52
[37] Wang L, Yang W G, Ding Y, Ren Y, Xiao S G, Liu B B, Sinogeikin S V, Meng Y, Gosztola D J, Shen G R, Hemley R J, Mao W L and Mao H K 2010 Phys. Rev. Lett. 105 095701
[38] Yang X, Li Q J, Liu Z D, Bai X, Song H W, Yao M G, Liu b, Liu R, Gong C, Lu S C, Yao Z, Li D M, Liu J, Chen Z Q, Zou B, Cui T and Liu B B 2013 J. Phys. Chem. C 117 8503
[39] Hoang V V 2007 J. Phys. D: Appl. Phys. 40 7454
[40] Machon D, Daniel M, Pischedda V, Daniele S, Bouvier P and LeFloch S 2010 Phys. Rev. B 82 140102
[41] McMillan P F 2004 J. Mater. Chem. 14 1506
[42] Mishima O, Calvert L D and Whalley E 1985 Nature 314 76
[43] McMillan P F, Wilson M, Daisenberger D and Machon D 2005 Nat. Mater. 4 680
[44] Li Q J, Liu R, Cheng B Y, Wang L, Yao M G and Li D M 2012 Mater. Res. Bull. 47 1396
[45] Wang Y J, Zhang J Z, Wu J, Coffer J L, Lin Z J, Sinogeikin S V, Yang W G and Zhao Y S 2008 Nano Lett. 8 2891
[46] Zardo I, Yazji S, Marini C, Uccelli E, Morral A F, Abstreiter G and Postorino P 2012 ACS Nano 6 3284
[47] Lin Yu, Yang Y, Ma H W, Cui Y and Mao W L 2011 J. Phys. Chem. C 115 9844
[48] Wang Z W, Daemen L L, Zhao Y S, Zha C S, Downs R T, Wang X D, Wang Z L and Hemley R 2005 Nat. Mater. 13 1
[49] Wang L H, Liu H Z, Qian J, Yang W G and Zhao Y S 2012 J. Phys. Chem. C 116 2074
[50] Li Q J, Liu R, Liu B B, Wang L, Wang K, Li D M, Zou B, Cui T, Liu J, Chen Z Q and Yang K 2012 RSC Adv. 2 9052
[51] Olsen J S, Gerward L and Jiang J Z 2002 High Pressure Res. 22 385
[1] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[2] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[3] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[4] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[5] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[6] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[7] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[8] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[9] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[10] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[11] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[12] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[13] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[14] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[15] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
No Suggested Reading articles found!