Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 076107    DOI: 10.1088/1674-1056/25/7/076107
Special Issue: TOPICAL REVIEW — High pressure physics
TOPICAL REVIEW—High pressure physics Prev   Next  

High pressure structural phase transitions of TiO2 nanomaterials

Quan-Jun Li(李全军), Bing-Bing Liu(刘冰冰)
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  

Recently, the high pressure study on the TiO2 nanomaterials has attracted considerable attention due to the typical crystal structure and the fascinating properties of TiO2 with nanoscale sizes. In this paper, we briefly review the recent progress in the high pressure phase transitions of TiO2 nanomaterials. We discuss the size effects and morphology effects on the high pressure phase transitions of TiO2 nanomaterials with different particle sizes, morphologies, and microstructures. Several typical pressure-induced structural phase transitions in TiO2 nanomaterials are presented, including size-dependent phase transition selectivity in nanoparticles, morphology-tuned phase transition in nanowires, nanosheets, and nanoporous materials, and pressure-induced amorphization (PIA) and polyamorphism in ultrafine nanoparticles and TiO2-B nanoribbons. Various TiO2 nanostructural materials with high pressure structures are prepared successfully by high pressure treatment of the corresponding crystal nanomaterials, such as amorphous TiO2 nanoribbons, α -PbO2-type TiO2 nanowires, nanosheets, and nanoporous materials. These studies suggest that the high pressure phase transitions of TiO2 nanomaterials depend on the nanosize, morphology, interface energy, and microstructure. The diversity of high pressure behaviors of TiO2 nanomaterials provides a new insight into the properties of nanomaterials, and paves a way for preparing new nanomaterials with novel high pressure structures and properties for various applications.

Keywords:  high pressure      nanomaterials      phase transition      TiO2  
Received:  05 June 2015      Revised:  02 July 2015      Accepted manuscript online: 
PACS:  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2011CB808200), the National Natural Science Foundation of China (Grant Nos. 11374120, 11004075, 10979001, 51025206, 51032001, and 21073071), and the Cheung Kong Scholars Programme of China.

Corresponding Authors:  Bing-Bing Liu     E-mail:  liubb@jlu.edu.cn

Cite this article: 

Quan-Jun Li(李全军), Bing-Bing Liu(刘冰冰) High pressure structural phase transitions of TiO2 nanomaterials 2016 Chin. Phys. B 25 076107

[1] Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M and Lu G Q 2008 Nature 453 638
[2] Etgar L, Zhang W, Gabriel S, Hickey S G, Nazeeruddin M K, Eychmuller A, Liu B and Gratzel M 2012 Adv. Mater. 24 2202
[3] Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y 2001 Science 293 269
[4] Chen X and Mao S S 2007 Chem. Rev. 107 2891
[5] Chen X B, Liu L and Huang F Q 2015 Chem. Rev. 44 1861
[6] Arlt T, Bermejo M, Blanco M A, Gerward L, Jiang J Z, Staun Olsen J, Recio J M and Recio J M 2000 Phys. Rev. B 61 14414
[7] Lagarec K and Desgreniers S 1995 Solid State Commun. 94 519
[8] Gerward L and Staun Olsen J 1997 J. Appl. Cryst. 30 259
[9] Dubrovinsky L S, Dubrovinskaia N A, Swamy V. Muscat J, Harrison N M, Ahuja R, Holm B and Johansson B 2001 Nature 410 653
[10] Swamy V and Muddle B C 2007 Phys. Rev. Lett. 98 035502
[11] Swamy V, Kuznetsov A, Dubrovinsky L S, Caruso R A, Shchukin D G and Muddle B C 2005 Phys. Rev. B 71 184302
[12] Hearne G R, Zhao J, Dawe A M, Pischedda V, Maaza M, Nieuwoudt M K, Kibasomba P, Nemraoui O, Comins J D and Witcomb M J 2004 Phys. Rev. B 70 134102
[13] Arlt T, Bermejo M, Blanco M A, Gerward L, Jiang J Z, Staun Olsen J, Recio J M and Recio J M 2000 Phys. Rev. B 61 14414
[14] Pischedda V, Hearne G R, Dawe A M and Lowther J E 2006 Phys. Rev. Lett. 96 035509
[15] Swamy V, Kuznetsov A, Dubrovinsky L S, McMillan P F, Prakapenka V B, Shen G Y and Muddle B C 2006 Phys. Rev. Lett. 96 135702
[16] Flank A M, Lagarde P, Itie J P, Polian A and Hearne G R 2008 Phys. Rev. B 77 224112
[17] Park S, Jang J, Cheon J, Lee H H, Lee D R and Lee Y 2008 J. Phys. Chem. C 112 9627
[18] Li Q J, Cheng B Y, Yang X, Liu R, Liu B, Liu J, Chen Z Q, Zou B, Cui T and Liu B B 2013 J. Phys. Chem. C 117 8516
[19] Dong Z H and Song Y 2015 Can. J. Chem. 93 165
[20] Li Q J, Cheng B Y, Tian B L, Liu R, Liu B, Wang F, Chen Z Q, Zou B, Cui T and Liu B B 2014 RSC Adv. 4 12873
[21] Li Q J, Liu B B, Wang L, Li D M, Liu R, Zou B, Cui T, Zou G T, Meng Y, Mao H K, Liu Z X, Liu J and Li J X 2010 J. Phys. Chem. Lett. 1 309
[22] Wang Z W, Saxena S K, Pischedda V, Liermann H P and Zha C S 2001 J. Phys.: Condens. Matter 13 8317
[23] Gerward L and Olsen J S 1997 J. Appl. Crystallogr. 30 259
[24] Jamieson J C and Olinger B 1968 Science 161 893
[25] Sasaki T 2002 J. Phys.: Condens. Matter 14 10557
[26] Montanari B and Harrison N M 2004 J. Phys.: Condens. Matter 16 273
[27] Wu X, Holbig E and Steinle-Neumann G 2010 J. Phys.: Condens. Matter 22 295501
[28] He Y, Liu J F, Chen W, Wang H, Zeng Y W, Zhang G Q, Wang L N, Liu J, Hu T D, Hahn H, Gleiter H and Jiang J Z 2005 Phys. Rev. B 72 212102
[29] Wu H M, Wang Z W and Fan H Y 2014 JACS 136 7634
[30] Quan Z W, Luo Z P, Wang Y X, Xu H W, Wang C Y, Wang Z W and Fang J Y 2013 Nano Lett. 13 3729
[31] Swamy V, Dubrovinsky L S, Dubrovinskaia N A, Langenhorst F, Simionovici A S, Drakopoulos M, Dmitriev V and Weber H P 2003 Solid State Commun. 125 111
[32] Al-Khatatbeh Y, Lee K K M and Kiefer B 2012 J. Phys. Chem. C 116 21635
[33] Machon D, Daniel M, Bouvier P, Daniele S, Floch S L, Melinon P and Pischedda V 2011 J. Phys. Chem. C 115 22286
[34] Mishima O, Calvert L D and Whalley E 1984 Nature 310 393
[35] Deb S K, Wilding M, Somayazulu M and McMillan P F 2001 Nature 414 528
[36] Hemley R J, Jephcoat A P, Mao H K, Ming L C and Manghnan M H 1988 Nature 334 52
[37] Wang L, Yang W G, Ding Y, Ren Y, Xiao S G, Liu B B, Sinogeikin S V, Meng Y, Gosztola D J, Shen G R, Hemley R J, Mao W L and Mao H K 2010 Phys. Rev. Lett. 105 095701
[38] Yang X, Li Q J, Liu Z D, Bai X, Song H W, Yao M G, Liu b, Liu R, Gong C, Lu S C, Yao Z, Li D M, Liu J, Chen Z Q, Zou B, Cui T and Liu B B 2013 J. Phys. Chem. C 117 8503
[39] Hoang V V 2007 J. Phys. D: Appl. Phys. 40 7454
[40] Machon D, Daniel M, Pischedda V, Daniele S, Bouvier P and LeFloch S 2010 Phys. Rev. B 82 140102
[41] McMillan P F 2004 J. Mater. Chem. 14 1506
[42] Mishima O, Calvert L D and Whalley E 1985 Nature 314 76
[43] McMillan P F, Wilson M, Daisenberger D and Machon D 2005 Nat. Mater. 4 680
[44] Li Q J, Liu R, Cheng B Y, Wang L, Yao M G and Li D M 2012 Mater. Res. Bull. 47 1396
[45] Wang Y J, Zhang J Z, Wu J, Coffer J L, Lin Z J, Sinogeikin S V, Yang W G and Zhao Y S 2008 Nano Lett. 8 2891
[46] Zardo I, Yazji S, Marini C, Uccelli E, Morral A F, Abstreiter G and Postorino P 2012 ACS Nano 6 3284
[47] Lin Yu, Yang Y, Ma H W, Cui Y and Mao W L 2011 J. Phys. Chem. C 115 9844
[48] Wang Z W, Daemen L L, Zhao Y S, Zha C S, Downs R T, Wang X D, Wang Z L and Hemley R 2005 Nat. Mater. 13 1
[49] Wang L H, Liu H Z, Qian J, Yang W G and Zhao Y S 2012 J. Phys. Chem. C 116 2074
[50] Li Q J, Liu R, Liu B B, Wang L, Wang K, Li D M, Zou B, Cui T, Liu J, Chen Z Q and Yang K 2012 RSC Adv. 2 9052
[51] Olsen J S, Gerward L and Jiang J Z 2002 High Pressure Res. 22 385
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[8] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[12] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[13] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[14] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[15] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
No Suggested Reading articles found!