Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 074701    DOI: 10.1088/1674-1056/25/7/074701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Three-dimensional flow of Powell-Eyring nanofluid with heat and mass flux boundary conditions

Tasawar Hayat1,2, Ikram Ullah1, Taseer Muhammad1, Ahmed Alsaedi2, Sabir Ali Shehzad3
1 Department of Mathematics, Quaid-I-Azam University, 45320, Islamabad 44000, Pakistan;
2 Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
3 Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000, Pakistan
Abstract  This article investigates the three-dimensional flow of Powell-Eyring nanofluid with thermophoresis and Brownian motion effects. The energy equation is considered in the presence of thermal radiation. The heat and mass flux conditions are taken into account. Mathematical formulation is carried out through the boundary layer approach. The governing partial differential equations are transformed into the nonlinear ordinary differential equations through suitable variables. The resulting nonlinear ordinary differential equations have been solved for the series solutions. Effects of emerging physical parameters on the temperature and nanoparticles concentration are plotted and discussed. Numerical values of local Nusselt and Sherwood numbers are computed and examined.
Keywords:  three-dimensional flow      Powell-Eyring fluid      nanoparticles      thermal radiation  
Received:  07 December 2015      Revised:  17 February 2016      Published:  05 July 2016
PACS:  47.15.Cb (Laminar boundary layers)  
  47.50.-d (Non-Newtonian fluid flows)  
  47.57.Qk (Rheological aspects)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
Corresponding Authors:  Taseer Muhammad     E-mail:  taseer_qau@yahoo.com

Cite this article: 

Tasawar Hayat, Ikram Ullah, Taseer Muhammad, Ahmed Alsaedi, Sabir Ali Shehzad Three-dimensional flow of Powell-Eyring nanofluid with heat and mass flux boundary conditions 2016 Chin. Phys. B 25 074701

[1] Choi S U S 1995 ASME FED 231 99
[2] Buongiorno J 2006 ASME J. Heat Transfer 128 240
[3] Khan W A and Pop I 2010 Int. J. Heat Mass Transfer 53 2477
[4] Makinde O D and Aziz A 2011 Int. J. Thermal Sci. 50 1326
[5] Mustafa M, Hayat T, Pop I, Asghar S and Obaidat S 2011 Int. J. Heat Mass Transfer 54 5588
[6] Turkyilmazoglu M 2012 Chem. Eng. Sci. 84 182
[7] Rashidi M M, Abelman S and Mehr N F 2013 Int. J. Heat Mass Transfer 62 515
[8] Ibrahim W and Makinde O D 2013 Comput. Fluids 86 433
[9] Sheikholeslami M, Abelman S and Ganji D D 2014 Int. J. Heat Mass Transfer 79 212
[10] Zeeshan A, Baig M, Ellahi R and Hayat T 2014 J. Comp. Theor. Nanosci. 11 646
[11] Lin Y, Zheng L and Zhang X 2014 Int. J. Heat Mass Transfer 77 708
[12] Zhang C, Zheng L, Zhang X and Chen G 2015 Appl. Math. Modell. 39 165
[13] Hayat T, Muhammad T, Shehzad S A and Alsaedi A 2015 AIP Adv. 5 017107
[14] Zaman H 2013 Am. J. Comput. Math. 3 313
[15] Mushtaq A, Mustafa M, Hayat T, Rahi M and Alsaedi A 2013 Z. Naturforsch. A 68 791
[16] Jalil M, Asghar S and Imran S M 2013 Int. J. Heat Mass Transfer 65 73
[17] Rosca A V and Pop I 2014 Int. J. Heat Mass Transfer 71 321
[18] Hayat T, Asad S, Mustafa M and Alsaedi A 2014 Plos One 9 e103214
[19] Poonia M and Bhargava R 2014 J. Thermophys. Heat Transfer 28 499
[20] Ashraf M B, Hayat T and Alsaedi A 2015 Eur. Phys. J. Plus 130 5
[21] Liao S J 2004 Appl. Math. Comput. 147 499
[22] Abbasbandy S, Hayat T, Alsaedi A and Rashidi M M 2014 Int. J. Numer. Methods Heat Fluid Flow 24 390
[23] Sheikholeslami M, Hatami M and Ganji D D 2014 J. Mol. Liquids 194 30
[24] Hayat T, Imtiaz M, Alsaedi A and Mansoor R 2014 Chin. Phys. B 23 054701
[25] Hayat T, Asad S, Mustafa M and Alsulami H H 2014 Chin. Phys. B 23 084701
[26] Lin Y and Zheng L 2015 AIP Adv. 5 107225
[27] Ellahi R, Hassan M and Zeeshan A 2015 Int. J. Heat Mass Transfer 81 449
[28] Hayat T, Muhammad T, Shehzad S A, Chen G Q and Abbas I A 2015 J. Magn. Magn. Mater. 389 48
[29] Abbasi F M, Mustafa M, Shehzad S A, Alhuthali M S and Hayat T 2016 Chin. Phys. B 25 014701
[30] Ariel P D 2007 Comput. Math. Appl. 54 920
[1] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[2] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[3] Functionalized magnetic nanoparticles for drug delivery in tumor therapy
Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳). Chin. Phys. B, 2021, 30(1): 017502.
[4] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[5] Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation
Hai-Hong Jia(贾海洪), De-Liang Bao(包德亮), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(4): 048701.
[6] Effect of C60 nanoparticles on elasticity of small unilamellar vesicles composed of DPPC bilayers
Tanlin Wei(魏坦琳), Lei Zhang(张蕾), Yong Zhang(张勇). Chin. Phys. B, 2020, 29(4): 048702.
[7] Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction
Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(3): 034302.
[8] Erratum to “Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method”
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2020, 29(3): 039901.
[9] Sintering reaction and microstructure of MAl (M = Ni, Fe, and Mg) nanoparticles through molecular dynamics simulation
Yuwen Zhang(张宇文), Yonghe Deng(邓永和), Qingfeng Zeng(曾庆丰), Dadong Wen(文大东), Heping Zhao(赵鹤平), Ming Gao(高明), Xiongying Dai(戴雄英), and Anru Wu(吴安如)$. Chin. Phys. B, 2020, 29(11): 116601.
[10] Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid
S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano†. Chin. Phys. B, 2020, 29(10): 100502.
[11] Field-variable magnetic domain characterization of individual 10 nm Fe3O4 nanoparticles
Zheng-Hua Li(李正华), Xiang Li(李翔), Wei Lu(陆伟). Chin. Phys. B, 2019, 28(7): 077504.
[12] Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2019, 28(4): 047701.
[13] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[14] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
[15] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
No Suggested Reading articles found!