Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 046401    DOI: 10.1088/1674-1056/25/4/046401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structure phase transformation and equation of state of cerium metal under pressures up to 51 GPa

Ce Ma(马策)1, Zuo-Yong Dou(窦作勇)1, Hong-Yang Zhu(祝洪洋)2, Guang-Yan Fu(付广艳)1, Xiao Tan(谈笑)1, Bin Bai(白彬)1, Peng-Cheng Zhang(张鹏程)1, Qi-Liang Cui(崔啟良)2
1 Science and Technology on Surface Physics and Chemistry Laboratory, P. O. Box No. 9-35, Huafengxincun, Jiangyou 621908, China;
2 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  This study presents high pressure phase transitions and equation of states of cerium under pressures up to 51 GPa at room temperature. The angle-dispersive x-ray diffraction experiments are carried out using a high energy synchrotron x-ray source. The bulk moduli of high pressure phases of cerium are calculated using the Birch-Murnaghan equation. We discuss and correct several previous controversial conclusions, which are caused by the measurement accuracy or personal explanation. The c/a axial ratio of ε-Ce has a maximum value at about 29 GPa, i.e., c/a ≈ 1.690.
Keywords:  cerium      equation of state      high pressure      phase transition  
Received:  24 September 2015      Revised:  04 December 2015      Published:  05 April 2016
PACS:  64.30.Ef (Equations of state of pure metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. NSAF.U1330115) and the National Major Scientific Instrument and Equipment Development Project of China (Grant No. 2012YQ130234).
Corresponding Authors:  Peng-Cheng Zhang, Qi-Liang Cui     E-mail:  zpc113@sohu.com;cql@jlu.edu.cn

Cite this article: 

Ce Ma(马策), Zuo-Yong Dou(窦作勇), Hong-Yang Zhu(祝洪洋), Guang-Yan Fu(付广艳), Xiao Tan(谈笑), Bin Bai(白彬), Peng-Cheng Zhang(张鹏程), Qi-Liang Cui(崔啟良) Structure phase transformation and equation of state of cerium metal under pressures up to 51 GPa 2016 Chin. Phys. B 25 046401

[1] Xu J A and Bi Y 2012 Physics 41 218 (in Chinese)
[2] Hecker S S 2000 Los Alamos Science 26 290
[3] Nikolaev A V and Tsvyashchenko A V 2012 Physics-Uspekhi. 55 657
[4] Dmitriev V P, Kuznetsov A Yu, Bandilet O, Bouvier P, Dubrovinsky L, Machon D and Weber H P 2004 Phys. Rev. B 70 014104
[5] Beecroft R I and Swenson C A 1960 J. Phys. Chem. Solids 15 234
[6] Jeong I K, Darling T W, Graf M J, Proffen T and Heffner R H 2004 Phys. Rev. Lett. 92 105702
[7] Lipp M J, Jackson D, Cynn H, Aracne C, Evans W J and McMahan A K 2008 Phys. Rev. Lett. 101 165703
[8] Allen J W and Martin R M 1982 Phys. Rev. Lett. 49 1106
[9] Johansson B 1974 Philos. Mag. 30 469
[10] McMahon M I and Nelmes R J 1997 Phys. Rev. Lett. 78 3884
[11] McMahon M I and Nelmes R J 1998 Rev. High Pressure Sci. Technol. 17 313
[12] Gu G L, Vohra Y K and Brister K E 1995 Phys. Rev. B 52 9107
[13] Tsiok O B and Khvostantsev L G 2001 J. Exp. Theor. Phys. 6 93
[14] Olsen J S, Gerward L, Benedict U and Itié J P 1985 Physica B 133 129
[15] Vohra Y K, Beaver S L, Akella J, Ruddle C A and Weir S T 1999 J. Appl. Phys. 85 2451
[16] Clark S M 2002 Crystallogr Rev. 8 57
[17] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[18] Murnaghan F D 1944 Proc. Nati. Acad. Sci. USA 30 244
[19] Perdew J D, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[20] Tian M F, Deng X, Fang Z and Dai X 2011 Phys. Rev. B 84 205124
[21] Zachariasen W H and Ellinger F H 1977 Acta Cryst. A33 155
[22] Endo S, Fujioka N and Sasaki H 1977 J. Phys. Soc. Jpn. 42 882
[23] Ravindran P, Nordström L, Ahuja R, Wills J M, Johansson B and Eriksson O 1998 Phys. Rev. B 57 2091
[1] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[2] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[3] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[4] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[5] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[6] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[7] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[8] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[9] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[10] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[11] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[12] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[13] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[14] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[15] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
No Suggested Reading articles found!