Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 045101    DOI: 10.1088/1674-1056/25/4/045101

Initiation of vacuum breakdown and failure mechanism of the carbon nanotube during thermal field emission

Dan Cai(蔡丹)1, Lie Liu(刘列)1, Jin-Chuan Ju(巨金川)1, Xue-Long Zhao(赵雪龙)1, Hong-Yu Zhou(周泓宇)1, Xiao Wang(王潇)2
1 College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073, China;
2 78010 PLA Troops, Chengdu 610000, China
Abstract  The carbon nanotube (CNT)-based materials can be used as vacuum device cathodes. Owing to the excellent field emission properties of CNT, it has great potentials in the applications of an explosive field emission cathode. The falling off of CNT from the substrate, which frequently appears in experiments, restricts its application. In addition, the onset time of vacuum breakdown limits the performance of the high-power explosive-emission-cathode-based diode. In this paper, the characteristics of the CNT, electric field strength, contact resistance and the kind of substrate material are varied to study the parameter effects on the onset time of vacuum breakdown and failure mechanism of the CNT by using the finite element method.
Keywords:  carbon nanotube      thermal field electron emission      vacuum breakdown      failure mechanism  
Received:  19 September 2015      Revised:  28 October 2015      Published:  05 April 2016
PACS:  51.50.+v (Electrical properties)  
  44.05.+e (Analytical and numerical techniques)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305263 and 61401484).
Corresponding Authors:  Dan Cai     E-mail:

Cite this article: 

Dan Cai(蔡丹), Lie Liu(刘列), Jin-Chuan Ju(巨金川), Xue-Long Zhao(赵雪龙), Hong-Yu Zhou(周泓宇), Xiao Wang(王潇) Initiation of vacuum breakdown and failure mechanism of the carbon nanotube during thermal field emission 2016 Chin. Phys. B 25 045101

[1] deHeer W A, Chatelain A and Ugarte D 1995 Science 270 1179
[2] Tans S J, Verschueren R M and Dekker C 1998 Nature 393 49
[3] Sohn J I, Lee S, Song Y H, Choi S Y, Cho K I and Nam K S 2001 Appl. Phys. Lett. 78 901
[4] Wang Q H, Yan M and Chang R P H 2001 Appl. Phys. Lett. 78 1294
[5] Mauger M and Binh V T 2006 J. Vac. Sci. Technol. B 24 997
[6] Chernnozatonskii L A, Gulyaev Y V, Kosakovskaja Z J, Sinitsyn N I, Torgashov G V, Zakharchenko Yu F, Fedorov E A and Val'chuk V P 1995 Chem. Phys. Lett. 233 63
[7] Yue G Z, Qiu Q, Gao B, Cheng Y, Zhang J, Shimoda H, Chang S, Lu J P and Zhou O 2002 Appl. Phys. Lett. 81 355
[8] Zhang J, Yang G, Lee Y Z, Chang S, Lu J P and Zhou O 2006 Appl. Phys. Lett. 89 064106
[9] Kawakita K, Hata K, Sato H and Saito Y 2006 J. Vac. Sci. Technol. B 24 950
[10] Teo K B K, Minous E, Hudanski L, Peauger F, Schnell J P, Gangloff L, Legagneux P, Dieumegard D, Amaratunga G A J and Milne W I 2005 Nature 437 968
[11] Milne W I, Teo K B K, Minous E, Groening O, Gangloff L, Hudanski L, Schnell J P, Dieumegard D, Peauger F, Bu I Y Y, Bell M S, Legagneux P, Hasko G and Amaratunga G A J 2006 J. Vac. Sci. Technol. B 24 345
[12] Ge X J, Zhong H H, Qian B L, Zhang J, Gao L, Jin Z X, Fan Y W and Yang J H 2010 Appl. Phys. Lett. 97 101503
[13] Wu D, Shu T, Zhu J, Zhang H and Ju J 2014 Physics of Plasmas 21 073105
[14] Zhang C B, Zhang J D, Wang H G and Du G X 2015 Microelectronics Reliability 55 508
[15] Zhang C B, Wang H G, Zhang J D, Du G X and Yang J 2014 IEEE Trans. Electromagn. Compat. 56 1545
[16] Li S, Gao J M, Yang H W, Qian B L and Pan Y 2015 IEEE Trans. Plasma Sci. 43 2687
[17] Oswald R B, Mclean F B, Shallhorn D R and Buxton L O 1971 J. Appl. Phys. 42 3463
[18] Liao Q L, Zhang Y, Xia L S, Huang Y H, Qi J J, Gao Z J and Zhang H 2007 Acta Phys. Sin. 56 5335 (in Chinese)
[19] Shiffler D, Zhou O, Bower C, LaCour M and Golby K 2004 IEEE Trans. Plasma Sci. 32 2152
[20] Liao Q L, Zhang Y, Huang Y H, Qi J J, Gao Z J, Xia L S and Zhang H 2008 Acta Phys. Sin. 57 1778 (in Chinese)
[21] Liao Q L, Yang Y, Qi J J, Zhang Y, Huang Y H, Xia L S and Liu L 2010 Appl. Phys. Lett. 96 073109
[22] Liao Q L, Zhang Y, Huang Y H, Qi J J, Gao Z J, Xia L S and Zhang H 2007 Appl. Phys. Lett. 90 151504
[23] Shen Y, Xia L S, Zhang H, Yang A M, Liu X G and Liao Q L 2012 High Power Laser and Particle Beams 24 957 (in Chinese)
[24] Yang J, Shu T, Zhang J and Fan Y W 2013 J. Appl. Phys. 113 043307
[25] Nardi E, Maron Y and Hoffmann D H H 2009 Laser Part. Beams 27 355
[26] Mesyats G A 2005 Plasma Phys. Control Fusion 47 A109
[27] Coogan J J and Rose E A 1992 Appl. Phys. Lett. 60 2062
[28] Benford J, Swegle J A and Schamiloglu E 2007 High Power Microwaves (New York: Taylor and Francis) and references therein
[29] Ribaya B P, Leung J, Brown P, Rahman M and Nguyen C V 2008 Nanotechnology 19 185201
[30] Liao Q L, Yang Y, Qi J J, Huang Y H, Zhang Y, Xia L S and Liu L 2010 Europhys. Lett. 90 16006
[31] Zhang G, Chen J, Deng S Z, She J C and Xu N S 2009 Ultramicroscopy 109 385
[32] Bonard J M, Klinke C, Dean K A and Coll B F 2003 Phys. Rev. B 67 115406
[33] Wang Z L, Gao R P, deHeer W A and Poncharal P 2002 Appl. Phys. Lett. 80 856
[34] Doytcheva M, Kaiser M and Jonge N D 2006 Nanotechnology 17 3226
[35] Williams L T, Kumsomboone V S, Ready W J and Walker M L R 2010 IEEE Trans. Electron Dev. 57 3163
[36] Liang X H, Deng S Z, Xu N S, Chen J, Huang N Y and She J C 2007 J. Appl. Phys. 101 063309
[37] Wei W, Liu Y, Wei Y, Jiang K, Peng L M and Fan S 2007 Nano Lett. 7 64
[38] Chen Y, Jiang H, Li D, Song H, Li Z, Sun X, Miao G and Zhao H 2011 Nanoscale Research Letter 6 537
[39] Qin Y X 2006 “The fabrication of carbon nanotubes cold cathode and its field emission property”, Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese)
[40] Nottingham W B 1936 Phys. Rev. 49 78
[41] Eletskii A V 2010 Physics-Uspekhi 53 863
[42] Anders A 2008 Cathodic Arcs: From Fractal Spots to Energetic Condensation (USA: Springer)
[43] Javey A, Guo M, Paulsson M, Wang Q, Mann D, Lundstrom M and Dai H 2004 Phys. Rev. Lett. 92 106804
[44] Pop E, Mann D, Cao J, Wang Q, Goodson K and Dai H 2005 Phys. Rev. Lett. 95 155505
[45] Yao Z, Kane C L and Dekker C 2000 Phys. Rev. Lett. 84 2941
[46] Paulini J, Klein T and Simon G 1993 J. Phys. D: Appl. Phys. 26 1310
[47] Huang N Y, She J C, Chen J, Deng S Z, Xu N S, Bishop H, Huq S E, Wang L, Zhong D Y, Wang E G and Chen D M 2004 Phys. Rev. Lett. 93 075501
[48] Fowler R H and Nordheim L 1928 Proc. R. Soc. London Ser. A 119 173
[49] Murphy W L and Good R H 1956 Phys. Rev. 102 1464
[50] Hantzsche E 1982 Beitr. Plasmaphys. 22 325
[51] Cai D and Liu L 2013 AIP Adv. 3 122103
[52] Edgcombe C J and Valdre U 2001 J. Microsc. 203 188
[53] Purcell S T, Vincent P, Journet C and Binh V T 2002 Phys. Rev. Lett. 88 105502
[54] Yi W, Lu L, Zhang D L, Pan Z W and Xie S S 1999 Phys. Rev. B 59 R9015
[55] Material parameters could be found from Wikipedia
[56] Doytcheva M, Kaiser M and de Jonge N 2006 Nanotechnology 17 3226
[57] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502
[58] Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F and Thio T 1996 Nature 382 54
[59] Xu N S and Huq S E 2005 Mater. Sci. Eng. Res. 48 47
[1] Carbon nanotube-based nanoelectromechanical resonatoras mass biosensor
Ahmed M. Elseddawy, Adel H. Phillips, Ahmed S Bayoumi. Chin. Phys. B, 2020, 29(7): 078501.
[2] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[3] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[4] Full filling of mesoporous carbon nanotubes by aqueous solution at room temperature
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2019, 28(3): 036801.
[5] Observation of 550 MHz passively harmonic mode-locked pulses at L-band in an Er-doped fiber laser using carbon nanotubes film
Qianqian Huang(黄千千), Chuanhang Zou(邹传杭), Tianxing Wang(王天行), Mohammed Al Araimi, Aleksey Rozhin, Chengbo Mou(牟成博). Chin. Phys. B, 2018, 27(9): 094210.
[6] Potentials of classical force fields for interactions between Na+ and carbon nanotubes
De-Yuan Li(李德远), Guo-Sheng Shi(石国升), Feng Hong(洪峰), Hai-Ping Fang(方海平). Chin. Phys. B, 2018, 27(9): 098801.
[7] Dependence of the solar cell performance on nanocarbon/Si heterojunctions
Shiqi Xiao(肖仕奇), Qingxia Fan(范庆霞), Xiaogang Xia(夏晓刚), Zhuojian Xiao(肖卓建), Huiliang Chen(陈辉亮), Wei Xi(席薇), Penghui Chen(陈鹏辉), Junjie Li(李俊杰), Yanchun Wang(王艳春), Huaping Liu(刘华平), Weiya Zhou(周维亚). Chin. Phys. B, 2018, 27(7): 078801.
[8] Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures
Haifei Zhan(占海飞), Yuantong Gu(顾元通). Chin. Phys. B, 2018, 27(3): 038103.
[9] Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes
Kui-Kui Zhou(周魁葵), Ning Xu(徐 宁), Guo-Feng Xie(谢国锋). Chin. Phys. B, 2018, 27(2): 026501.
[10] Large magnetic moment at sheared ends of single-walled carbon nanotubes
Jian Zhang(张健), Ya Deng(邓娅), Ting-Ting Hao(郝婷婷), Xiao Hu(胡潇), Ya-Yun Liu(刘雅芸), Zhi-Sheng Peng(彭志盛), Jean Pierre Nshimiyimana, Xian-Nian Chi(池宪念), Pei Wu(武佩), Si-Yu Liu(刘思雨), Zhong Zhang(张忠), Jun-Jie Li(李俊杰), Gong-Tang Wang(王公堂), Wei-Guo Chu(褚卫国), Chang-Zhi Gu(顾长志), Lian-Feng Sun(孙连峰). Chin. Phys. B, 2018, 27(12): 128101.
[11] Closed-form internal impedance model and characterization of mixed carbon nanotube bundles for three-dimensional integrated circuits
Qijun Lu(卢启军), Zhangming Zhu(朱樟明), Yintang Yang(杨银堂), Ruixue Ding(丁瑞雪), Yuejin Li(李跃进). Chin. Phys. B, 2018, 27(1): 017303.
[12] Control water molecules across carbon-based nanochannels
Xianwen Meng(孟现文), Jiping Huang(黄吉平). Chin. Phys. B, 2018, 27(1): 013101.
[13] Electromechanical actuation of CNT/PVDF composite films based on a bridge configuration
Xiaogang Gu(谷孝刚), Xiaogang Xia(夏小刚), Nan Zhang(张楠), Zhuojian Xiao(肖卓建), Qingxia Fan(范庆霞), Feng Yang(杨丰), Shiqi Xiao(肖仕奇), Huiliang Chen(陈辉亮), Weiya Zhou(周维亚), Sishen Xie(解思深). Chin. Phys. B, 2017, 26(7): 078101.
[14] Detection of invisible phonon modes in individual defect-free carbon nanotubes by gradient-field Raman scattering
Feng Yang(杨丰), Yinglu Ji(纪英露), Xiao Zhang(张霄), Qingxia Fan(范庆霞), Nan Zhang(张楠), Xiaogang Gu(谷孝刚), Zhuojian Xiao(肖卓建), Qiang Zhang(张强), Yanchun Wang(王艳春), Xiaochun Wu(吴晓春), Junjie Li(李俊杰), Weiya Zhou(周维亚). Chin. Phys. B, 2017, 26(7): 078801.
[15] Design and optimization of carbon nanotube/polymer actuator by using finite element analysis
Wei Zhang(张薇), Luzhuo Chen(陈鲁倬), Jianmin Zhang(张健敏), Zhigao Huang(黄志高). Chin. Phys. B, 2017, 26(4): 048801.
No Suggested Reading articles found!