Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 033102    DOI: 10.1088/1674-1056/25/3/033102

γ-and α-Ce phase diagram: First-principle calculation

Lin Zhang(张林), Ying-Hua Li(李英华), Xue-Mei Li(李雪梅), Zu-Gen Zhang(张祖根), Xiang-Ping Ye(叶想平), Ling-Cang Cai(蔡灵仓)
National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, Mianyang 621900, China
Abstract  Controversies about the phase diagram for the isostructural γα phase transition of cerium have long been standing out for several decades. To seek insight into the problems, high-precision equations of state (EOS) for γ-and α-cerium are constructed based on first-principle calculation. Versus previous works, the strong anharmonic effects of ion vibration and the variation of magnetism of γ-cerium are stressed. The new EOS generally agrees well with experimental data regarding thermodynamics, phase diagrams, and phase transitions. However, new EOS predicts that another part of phase boundary in pressure-temperature space may exist except for the commonly known boundary. In addition, the well-known critical point seems to be a critical point for γ-cerium to translate from a stable state to an unstable state.
Keywords:  ab initio calculations      phase transition      equation of states  
Received:  13 July 2015      Revised:  24 November 2015      Published:  05 March 2016
PACS:  31.15.A- (Ab initio calculations)  
  81.30.Bx (Phase diagrams of metals, alloys, and oxides)  
  82.35.Jk (Copolymers, phase transitions, structure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272293 and U1230201), the Defense Industrial Technology Development Program (Grant No. B1520132001), and the Foundation of National Key Laboratory of Shock Wave and Detonation Physics of China (Grant No. 9140C670301140C67283).
Corresponding Authors:  Lin Zhang     E-mail:,

Cite this article: 

Lin Zhang(张林), Ying-Hua Li(李英华), Xue-Mei Li(李雪梅), Zu-Gen Zhang(张祖根), Xiang-Ping Ye(叶想平), Ling-Cang Cai(蔡灵仓) γ-and α-Ce phase diagram: First-principle calculation 2016 Chin. Phys. B 25 033102

[1] Moore K T, Belhadi L, Decremps F, Farber D L, Bradley J A, Occelli F, Gauthier M, Polian A and Aracne-Ruddle C M 2011 Acta Materialia 59 6007
[2] Li M M, Long Y Z, Yin H X and Zhang Z M 2011 Chin. Phys. B 20 048101
[3] Hu C E, Zeng Z Y, Zhang L, Chen X R and Cai L C 2011 Physica B 406 669
[4] Casadei M, Ren X, Rinke P, Rubio A and Scheffler M 2012 Phys. Rev. Lett. 109 146402
[5] Lipp M J, Sorini A P, Bradley J, Maddox B, MooreK T, Cynn H, Devereaux T P, Xiao Y, Chow P and Evans W J 2012 Phys. Rev. Lett. 109 195705
[6] Lipp M J, Kono Y, Jenei Z S, Cynn H, Aracne-Ruddle C, Park C, Kenney-Benson C and Evans W J 2013 J. Phys.: Conden. Matter 25 345401
[7] Peng Y Z, Li Y, Bai R, Huo D X and Qian Z H 2014 Chin. Phys. B 23 097503
[8] Amadon B and Georossier A 2015 Phys. Rev. B 91 161103
[9] Tian M F, Song H F, Liu H F, Wang C, Fang Z and Dai X 2015 Phys. Rev. B 91 125148
[10] Devaux N, Casula M, Decremps F and Sorella S 2015 Phys. Rev. B 91 081101R
[11] Koskimaki D C and Gschneidner J K A 1978 Handbook on the Physics and Chemistry of Rare Earths (Amsterdam: North-Holland)
[12] Jeong I K, Darling T W, Graf M J, Proffen Th and Heffner R H 2004 Phys. Rev. Lett. 92 105702
[13] Decremps F, Antonangeli D, Amadon B and Schmerber G 2009 Phys. Rev. B 80 132103
[14] Schuch A F and Sturdivant J H 1950 J. Chem. Phys. 18 145
[15] Gustafson D R, McNutt J D and Roellig L O 1969 Phys. Rev. 183 435
[16] Johansson B 1974 Philos. Mag. 30 469
[17] Kornstädt U, Lässer R and Lengeler B 1980 Phys. Rev. B 21 1898
[18] Allen J W and Martin R M 1982 Phys. Rev. Lett. 49 1106
[19] Liu L Z, Allen J W, Gunnarsson O, Christensen N E and Andersen O K 1992 Phys. Rev. B 45 8934
[20] Allen J W and Liu L Z 1992 Phys. Rev. B 46 5047
[21] Johonsson B, Abrikosov I A, Aldén M, Ruban A V and Skriver H L 1995 Phys. Rev. Lett. 74 2335
[22] Lipp M J, Jackson D, Cynn H, Aracne C, Evans W J and McMahan A K 2008 Phys. Rev. Lett. 101 165703
[23] Johansson B, Ruban A V and Abrikosov I A 2009 Phys. Rev. Lett. 102 189601
[24] Decremps F, Belhadi L, Farber D L, Moore K T, Occelli F, Gauthier M, Polian A, Antonangeli D, Aracne-Ruddle C M and Amadon B 2011 Phys. Rev. Lett. 106 065701
[25] Wieliczka D M, Olson C G and Lynch D W 1984 Phys. Rev. B 29 3028
[26] van der Eb J W, Kuzmenko A B and van der Marel D 2001 Phys. Rev. Lett. 86 3407
[27] Young D A 1991 Phase Diagrams of The Elements (Berkeley: University of California Press) Chap. 14, p. 196
[28] Beecroft R I and Swenson C A 1960 J. Phys. Chem. Solids 15 234
[29] Eliashberg G and Capellmann H 1998 JETP Lett. 67 125
[30] Tsvyashchenko A V, Nikolaev A V, Velichkov A I, Salamatin A V, Fomicheva L N, Ryasny G K, Sorokin A A, Kochetov O I, Budzynski M and Michel K H 2010 Phys. Rev. B 82 092102
[31] Laegsgaard J and Svane A 1999 Phys. Rev. B 59 3450
[32] Wang Y, Hector L G, Zhang J H, Shang S L, Chen L Q and Liu Z K 2008 Phys. Rev. B 78 104113
[33] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[34] Amadon B, Biermann S, Geoyes A and Aryasetiawan F 2006 Phys. Rev. Lett. 96 066402
[35] Fabris S, de Gironcoli S, Baroni S, Vicario G and Balducci G 2005 Phys. Rev. B 71 041102
[36] Adelstein N, Mun B S, Ray H L, Ross Jr P N, Neaton J B, De Jonghe L C 2011 Phys. Rev. B 83 205104
[37] Vinet P, Ferrante J, Smith J R and Rose J H 1986 J. Phys. C: Solid State Phys. 19 L467
[38] Vashchenko Y V and Zubarev V N 1963 Soviet Phys. Solid State 5 653
[39] Kittel C 1976 Solid State Phys. (New York: Wiley)
[40] Moruzzi V L, Janak J F and Schwarz K 1988 Phys. Rev. B 37 790
[41] Jing F Q 1999 Experimental Equation of State Quidance (Beijing: Science Press) (in Chinese)
[42] Rosen M 1967 Phys. Rev. Lett. 19 695
[43] Söderlind P, Eriksson O, Wills J M and Boring A M 1993 Phys. Rev. B 48 9306
[44] Svane A 1994 Phys. Rev. Lett. 72 1248
[45] Staun Olsen J, Gerward L, Dancausse J P and Gering E 1993 Physica B 190 92
[46] Olsen J S, Gerward L, Benedict U and ITIÉ J P 1985 Physica B 133 129
[47] Donohue J 1974 The Structure of the Elements (New York: John Wiley & Sons Inc.)
[48] Eriksson O, Brooks M S S and Johansson B 1990 Phys. Rev. B 41 7311
[1] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[2] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[3] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[4] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[5] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[6] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[7] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[8] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[9] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[10] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[11] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[12] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[13] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[14] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[15] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
No Suggested Reading articles found!