Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 114211    DOI: 10.1088/1674-1056/25/11/114211

Ultra broadband flat dispersion tailoring on reversed-rib chalcogenide glass waveguide

Yanfen Zhai(翟彦芬), Renduo Qi(齐人铎), Chenzhi Yuan(袁晨智), Wei Zhang(张巍), Yidong Huang(黄翊东)
Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Abstract  In this paper, we introduce a horizontal slot in the reversed-rib chalcogenide glass waveguide to tailor its dispersion characteristics. The waveguide exhibits a flat and low dispersion over a wavelength range of 1080 nm, in which the dispersion fluctuates between -10.6 ps·nm-1·km-1 and+11.14 ps·nm-1·km-1. The dispersion tailoring effect is due to the mode field transfer from the reversed-rib waveguide to the slot with the increase of wavelength, which results in the extension of the low dispersion band. Moreover, the nonlinear coefficient and the phase-matching condition of the four-wave mixing process in this waveguide are studied, showing that the waveguide has great potential in nonlinear optical applications over a wide wavelength range.
Keywords:  chalcogenides films      nonlinear optics      waveguides      dispersion     
Received:  17 February 2016      Published:  05 November 2016
PACS:  42.65.Wi (Nonlinear waveguides)  
  42.65.-k (Nonlinear optics)  
  42.79.-e (Optical elements, devices, and systems)  
  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB328700 and 2011CBA00303) and the National Natural Science Foundation of China (Grant Nos. 61575102 and 61321004).
Corresponding Authors:  Wei Zhang     E-mail:

Cite this article: 

Yanfen Zhai(翟彦芬), Renduo Qi(齐人铎), Chenzhi Yuan(袁晨智), Wei Zhang(张巍), Yidong Huang(黄翊东) Ultra broadband flat dispersion tailoring on reversed-rib chalcogenide glass waveguide 2016 Chin. Phys. B 25 114211

[1] Chavez B J M, Bodenmüller D, Fremberg T, Haynes R, Roth M M, Eisermann R, Lisker M, Zimmermann L and Böhm M 2014 J. Opt. Soc. Am. B 31 2846
[2] Lamont M R, Luther-Davies B, Choi D Y, Madden S and Eggleton B J 2008 Opt. Express 16 14938
[3] De Leonardis F and Passaro V M N 2011 Adv. Optoelectron. 2011 751498
[4] Duan L, Yang Z Y, Liu C and Yang W L 2016 Chin. Phys. Lett. 33 10501
[5] Wang H Y, Xu W C, Luo Z C, Luo A P, Cao W J, Dong J L and Wang L Y 2011 Chin. Phys. Lett. 28 024207
[6] Amiri I S, Afroozeh A, Bahadoran M, Amiri I S, Afroozeh A and Bahadoran M 2011 Chin. Phys. Lett. 28 104205
[7] McCarthy J, Bookey H, Beecher S, Lamb R, Elder I and Kar A K 2013 Appl. Phys. Lett. 103 151103
[8] Zhang H, Das S, Huang Y, Li C, Chen S, Zhou H, Yu M, Guo-Qiang L P and Thong J T L 2012 Appl. Phys. Lett. 101 021105
[9] Yu Y, Gai X, Wang T, Ma P, Wang R, Yang Z, Choi D Y, Madden S and Luther-Davies B 2013 Opt. Mater. Express 3 1075
[10] Zhang L, Lin Q, Yue Y, Yan Y, Beausoleil R G and Willner A E 2012 Opt. Express 20 1685
[11] Liang T K and Tsang H K 2004 Appl. Phys. Lett. 84 2745
[12] Liu Q, Gao S, Li Z, Xie Y and He S 2011 Appl. Opt. 50 1260
[13] Lin Q, Zhang J, Fauchet P M and Agrawal G P 2006 Opt. Express 14 4786
[14] Lamont M R, de Sterke C M and Eggleton B J 2007 Opt. Express 15 9458
[15] An L, Liu H, Sun Q, Huang N and Wang Z 2014 Appl. Opt. 53 4886
[16] Jin B, Yuan J, Yu C, Sang X, Wei S, Zhang X, Wu Q and Farrell G 2014 Opt. Express 22 6257
[17] Collins M J, Clark A S, He J, Choi D Y, Williams R J, Judge A C, Madden S J, Withford M J, Steel M J, Luther-Davies B, Xiong C and Eggleton B J 2012 Opt. Lett. 37 3393
[18] Cardinal T, Richardson K A, Shim H, Schulte A, Beatty R, Le Foulgoc K, Meneghini C, Viens J F and Villeneuve A 1999 J. Non-Cryst. Solids 256 353
[19] Viens J F, Meneghini C, Villeneuve A, Galstian T V, Knystautas E J, Duguay M A, Richardson K A and Cardinal T 1999 J. Light. Technol. 17 1184
[20] Feigel A, Kotler Z, Sfez B, Arsh A, Klebanov M and Lyubin V 2000 Appl. Phys. Lett. 77 3221
[21] Zhai Y, Qi R, Yuan C, Dong S, Zhang W and Huang Y 2016 IEEE Photonics J. 8 2700709
[22] Al-Kadry A, Li L, Amraoui M E, North T, Messaddeq Y and Rochette M 2015 Opt. Lett. 40 4687
[23] Zhai Y, Yuan C, Qi R, Zhang W and Huang Y 2015 IEEE Photonics J. 7 7801609
[24] Chiles J, Malinowski M, Rao A, Novak S, Richardson K and Fathpour S 2015 Appl. Phys. Lett. 106 111110
[25] Luther-Davies B, Yu Y, Zhang B, Gai X, Zhai C, Qi S, Guo W, Yang Z, Wang R, Choi D Y, Madden S, Moller U, Kubat I, Petersen C, Brilland L, M'echin D, Caillaud C, Troles J and Bang O 2015 Nonlinear Optics 2015$, OSA Technical Digest p. NTu1A.4
[26] Yu Y, Gai X, Ma P, Choi D Y, Yang Z, Wang R, Debbarma S, Madden S J and Luther-Davies B 2014 Laser Photonics Rev. 8 792
[27] Zou Y, Moreel L, Lin H, Zhou J, Li L, Danto S, Musgraves J D, Koontz E, Richardson K, Dobson K D, Birkmire R and Hu J 2014 Adv. Opt. Mater. 2 759
[28] Zou Y, Zhang D, Lin H, Li L, Moreel L, Zhou J, Du Q, Ogbuu O, Danto S, Musgraves J D, Richardson K, Dobson K D, Birkmire R and Hu J 2014 Adv. Opt. Mater. 2 478
[29] Zha Y, Lin P T, Kimerling L, Agarwal A and Arnold C B 2014 ACS Photonics 1 153
[30] Gai X, Madden S, Choi D Y, Bulla D and Luther-Davies B 2010 Opt. Express 18 18866
[31] Eggleton B J, Luther-Davies B and Richardson K 2011 Nat. Photonics 5 141
[32] Eggleton B J 2010 Opt. Express 18 26632
[33] Karim M R, Rahman B M A, Azabi Y O, Agrawal A and Agrawal G P 2015 JOSA B 32 2343
[34] Luther-Davies B, Gai X, Madden S J, Choi D Y, Yang Z, Wang R, Ma P and Yu I 2013 CLEO:Science and Innovations (Optical Society of America) p. CM1L
[35] Eggleton B J, Vo T D, Pant R, Schr J, Pelusi M D, Yong C D, Madden S J and Luther-Davies B 2012 Laser Photonics Rev. 6 97
[36] Collins M J, Clark A, He J, Shahnia S, Williams R J, Judge A C, Magi E, Choi D Y, Luther-Davies B and Eggleton B J 2012 Frontiers in Optics (Optical Society of America) p. FTu4D
[37] Qiao H A, Anheier N C, Musgrave J D, Richardson K and Hewak D W 2011 SPIE Defense, Security, and Sensing (International Society for Optics and Photonics) p. 80160F
[38] Bao C, Yan Y, Zhang L, Yue Y, Ahmed N, Agarwal A M, Kimerling L C, Michel J and WillnerA E 2015 J. Opt. Soc. Am. B 32 26
[39] Liu Y, Yan J and Han G 2014 Appl. Opt. 53 6302
[40] Wang S, Hu J, Guo H and Zeng X 2013 Opt. Express 21 3067
[41] Nolte P W, Bohley C and Schilling J 2013 Opt. Express 21 1741
[42] Zhu M, Liu H, Li X, Huang N, Sun Q, Wen J and Wang Z 2012 Opt. Express 20 15899
[43] Zhang L, Yue Y, Xiao-Li Y, Wang J, Beausoleil R G and WillnerA E 2010 Opt. Express 18 13187
[44] He J, Xiong C, Clark A S, Collins M J, Gai X, Choi D Y, Madden S J, Luther-Davies B and Eggleton B J 2012 J. Appl. Phys. 112 123101
[45] Choi D Y, Maden S, Rode A, Wang R and Luther-Davies B 2008 J. Non-Cryst. Solids 354 3179
[46] Gai X, Han T, Prasad A, Madden S, Choi D Y, Wang R, Bulla D and Luther-Davies B 2010 Opt. Express 18 26635
[47] Choi D Y, Madden S, Rode A, Wang R, Bulla D and Luther-Davies B 2008 J. Non-Cryst. Solids 354 5253
[48] Choi D Y, Madden S, Bulla D A, Wang R, Rode A and Luther-Davies B 2010 IEEE Photonics Technol. Lett. 22 495
[49] Pittman T B, Jacobs B C and Franson J D 2005 Opt. Commun. 246 545
[50] Zhai Y, Qi R, Yuan C, Zhang W and Huang Y 2016 Appl. Phys. Express 9 052201
[51] Barile C J, Nuzzo R G and Gewirth A A 2015 J. Phys. Chem. C 119 13524
[52] Rodney W S, et al. 1958 Anon Refractive Index of As2S3 (Arsenic Trisulfide)
[53] Malitson I H 1965 Anon Refractive Index of SiO2 (Silicon Dioxide, Silica, Quartz)
[54] Li L, Zou Y, Lin H, Hu J, Sun X, Feng N N, Danto S, Richardson K, Gu T and Haney M 2013 J. Light. Technol. 31 4080
[1] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[2] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[3] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[4] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[5] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[6] Graphene's photonic and optoelectronic properties-A review
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga. Chin. Phys. B, 2020, 29(3): 037801.
[7] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[8] Zitterbewegung of Dirac quasiparticles emerged in a Su-Schrieffer-Heeger lattice
Yue Hu(胡玥), Zheng-Xin Guo(郭政鑫), Ze-Ming Zhong(钟泽明), and Zhi Li(李志). Chin. Phys. B, 2020, 29(11): 110302.
[9] Variable optical chirality in atomic assisted microcavity
Hao Zhang(张浩), Wen-Xiu Li (李文秀), Peng Han(韩鹏), Xiao-Yang Chang(常晓阳), Shuo Jiang(蒋硕), An-Ping Huang(黄安平), and Zhi-Song Xiao(肖志松). Chin. Phys. B, 2020, 29(11): 114207.
[10] Study on dispersion characteristics of terahertz waves in helical waveguides
Jin-Hai Sun(孙金海), Shao-Hua Zhang(张少华), Xu-Tao Zhang(张旭涛), He Cai(蔡禾), Yong-Qiang Liu(刘永强), and Zeng-Ming Chao(巢增明)$. Chin. Phys. B, 2020, 29(11): 114301.
[11] Exciton dynamics in different aromatic hydrocarbon systems
Milica Rutonjski, Petar Mali, Slobodan Radošević, Sonja Gombar, Milan Pantić, Milica Pavkov-Hrvojević. Chin. Phys. B, 2020, 29(10): 107103.
[12] High-performance waveguide-integrated Ge/Si avalanche photodetector with small contact angle between selectively epitaxial growth Ge and Si layers
Xiao-Qian Du(杜小倩), Chong Li(李冲), Ben Li(黎奔), Nan Wang(王楠), Yue Zhao(赵越), Fan Yang(杨帆), Kai Yu(余凯), Lin Zhou(周琳), Xiu-Li Li(李秀丽), Bu-Wen Cheng(成步文), Chun-Lai Xue(薛春来). Chin. Phys. B, 2019, 28(6): 064208.
[13] Loss induced negative refraction and super-prism effect at highly absorptive interface
Jian Wu(吴坚), Tao Wang(王涛), Tianyue Hou(侯天悦), Xuefen Kan(阚雪芬), Cheng Yin(殷澄), Pu Zhou(周朴), Zhuangqi Cao(曹庄琪). Chin. Phys. B, 2019, 28(5): 054201.
[14] Amplitude and phase controlled absorption and dispersion of coherently driven five-level atom in double-band photonic crystal
Li Jiang(姜丽), Ren-Gang Wan(万仁刚). Chin. Phys. B, 2019, 28(2): 024206.
[15] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
No Suggested Reading articles found!