Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 090306    DOI: 10.1088/1674-1056/24/9/090306
GENERAL Prev   Next  

Controlled mutual quantum entity authentication using entanglement swapping

Min-Sung Kanga b, Chang-Ho Honga b, Jino Heoa b, Jong-In Lima b, Hyung-Jin Yanga b c
a Center for Information Security Technologies (CIST), Korea University, Seoul, South Korea;
b Graduate School of Information Security, Korea University, Anam 5-ga Sungbuk-gu, Seoul, South Korea;
c Department of Physics, Korea University, Sejong, 339-700, South Korea
Abstract  In this paper, we suggest a controlled mutual quantum entity authentication protocol by which two users mutually certify each other on a quantum network using a sequence of Greenberger-Horne-Zeilinger (GHZ)-like states. Unlike existing unidirectional quantum entity authentication, our protocol enables mutual quantum entity authentication utilizing entanglement swapping; moreover, it allows the managing trusted center (TC) or trusted third party (TTP) to effectively control the certification of two users using the nature of the GHZ-like state. We will also analyze the security of the protocol and quantum channel.
Keywords:  quantum authentication      quantum cryptography      quantum communication      GHZ-like state  
Received:  31 January 2015      Revised:  03 February 2015      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the Research Foundation of Korea University.
Corresponding Authors:  Hyung-Jin Yang     E-mail:  yangh@korea.ac.kr

Cite this article: 

Min-Sung Kang, Chang-Ho Hong, Jino Heo, Jong-In Lim, Hyung-Jin Yang Controlled mutual quantum entity authentication using entanglement swapping 2015 Chin. Phys. B 24 090306

[1] Menezes A J, von Oorschot P C and Vantone S A 1996 Handbook of Applied Cryptography (Boca Raton: CRC Press)
[2] Schneier B 1995 Applied Cryptography (2nd edn.) (Wiley)
[3] Stinson D R 2005 Cryptography: Theory and Practice (3rd edn.) (Boca Raton: CRC Press)
[4] Forouzan B A 2008 Cryptography and Network Security (International Edition) (New York: McGraw Hill)
[5] ISO/IEC 9798-1 2010 Information Technology-Security Techniques-Entity Authentication-Part 1: General
[6] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, p. 175
[7] DuŜek M, Haderka O, Hendrych M and Mayska R 1999 Phys. Rev. A 60 149
[8] Ljunggren D, Bourennane M and Karlsson A 2000 Phys. Rev. A 62 022305
[9] Mihara T 2002 Phys. Rev. A 65 052326
[10] Zhang Z S, Zeng G H, Zhou N R and Xiong J 2006 Phys. Lett. A 356 199
[11] Huang P, Zhu J, Lu Y and Zeng G H 2011 Int. J. Quantum Inf. 9 701
[12] Zhou N, Zeng G, Zeng W and Zhu F 2005 Opt. Commun. 254 380
[13] Wang J, Zhang Q and Tang C J 2006 Chin. Phys. Lett. 23 2360
[14] Yang Y G, Wen Q Y and Zhang X 2008 Sci. China Ser. G, Phys. Astron. 51 321
[15] Yang Y G and Wen Q Y 2009 Chin. Phys. B 18 3233
[16] Yang Y G, Wang H Y, Jin X and Zhang H 2013 Int. J. Theor. Phys. 52 524
[17] Deng F G and Long G L 2004 Phys. Rev. A 70 012311
[18] Nguyen B A 2004 Phys. Lett. A 328 6
[19] Deng F G, Zhou H Y and Long G L 2005 Phys. Lett. A 337 329
[20] Zhu A D, Xia Y, Fan Q G and Zhang S 2006 Phys. Rev. A 73 022338
[21] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2006 Phys. Lett. A 359 359
[22] Man Z X and Xia Y J 2006 Chin. Phys. Lett. 23 1680
[23] Hong C H, Lim J I, Kim J I and Yang H J 2010 J. Korean. Phys. Soc. 56 1733
[24] Gu B, Huang Y G, Fang X and Chen Y L 2011 Commun. Theor. Phys. 56 659
[25] Zha X W, Zou Z C, Qi J X and Song H Y 2013 Int. J. Theor. Phys. 52 1740
[26] Li Y H, Li X L, Sang M H, Nie Y Y and Wang Z S 2013 Quantum. Inf. Process. 12 3835
[27] Yan L L, Chang Y and Zhang S B 2013 Chin. Phys. Lett. 30 090301
[28] Heo J, Hong C H, Lim J I and Yang H J 2015 Int. J. Theor. Phys. 54 2261
[29] Hong C H, Heo J, Khym G L, Lim J I, Hong S K and Yang H J 2010 Opt. Commun. 283 2644
[30] Hong C H, Heo J, Lim J I and Yang H J 2012 Chin. Phys. Lett. 29 050303
[31] Hong C H, Heo J, Lim J I and Yang H J 2012 J. Korean Phys. Soc. 61 1
[32] Hong C H, Heo J, Lim J I and Yang H J 2014 Chin. Phys. B 23 090309
[33] Yoon C S, Kang M S, Lim J I and Yang H J 2015 Phys. Scr. 90 015103
[34] Kang M S, Hong C H, Heo J, Lim J I and Yang H J 2015 Int. J. Theor. Phys. 54 614
[35] Deng F G, Li C Y, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338
[36] Gao T, Yan F L and Wang Z X 2005 Chin. Phys. 14 893
[37] Yang K, Huang L, Yang W and Song F 2009 Int. J. Theor. Phys. 48 516
[38] Xiao L, Long G L, Deng F G and Pan J W 2004 Phys. Rev. A 69 052307
[39] Li X H, Zhou P, Li C Y, Zhou H Y and Deng F G 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1975
[40] Deng F G, Zhou P, Li X H, Li C Y and Zhou H Y 2006 Chin. Phys. Lett. 23 1084
[41] Hsieh C R, Tasi C W and Hwang T 2010 Commun. Theor. Phys. 54 1019
[42] Kao S H and Hwang T 2013 Chin. Phys. B 22 060308
[43] Dong Li, Xiu X M, Gao Y J, Ren Y P and Liu H W 2011 Opt. Commun. 284 905
[44] Zhou N R, Cheng H L, Tao X Y and Gong L H 2014 Quantum Inf. Process 13 513
[45] Li C Y, Zhou H Y, Wang Y and Deng F G 2005 Chin. Phys. Lett. 22 1049
[46] Li C Y, Li X H, Deng F G, Zhou P, Liang Y J and Zhou H Y 2006 Chin. Phys. Lett. 23 2896
[47] Li W, Fan M Y and Wang G W 2012 Chin. Phys. B 21 120305
[48] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[49] Lo H K and Chau H F 1999 Science 283 2050
[50] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[51] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[52] Deng F D, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[53] Deng F D and Long G L 2004 Phys. Rev. A 69 052319
[54] Wang C, Deng F D, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[55] Gu B, Zhang C Y, Cheng G S and Huang Y G 2011 Sci. Chin: Phys. Mech. Astron. 54 942
[56] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
[57] Gu B, Huang Y G, Fang X and Chen Y L 2013 Int. J. Theor. Phys. 52 4461
[58] Chang Y, Xu C X, Zhang S B and Yan L L 2013 Chin. Sci. Bull. 58 4571
[1] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[2] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[3] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[4] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[5] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
[6] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[7] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[8] Coherent attacks on a practical quantum oblivious transfer protocol
Guang-Ping He(何广平). Chin. Phys. B, 2018, 27(10): 100308.
[9] Cancelable remote quantum fingerprint templates protection scheme
Qin Liao(廖骎), Ying Guo(郭迎), Duan Huang(黄端). Chin. Phys. B, 2017, 26(9): 090302.
[10] Multi-copy entanglement purification with practical spontaneous parametric down conversion sources
Shuai-Shuai Zhang(张帅帅), Qi Shu(祁舒), Lan Zhou(周澜), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(6): 060307.
[11] Continuous variable quantum key distribution
Yong-Min Li(李永民), Xu-Yang Wang(王旭阳), Zeng-Liang Bai(白增亮), Wen-Yuan Liu(刘文元), Shen-Shen Yang(杨申申), Kun-Chi Peng(彭堃墀). Chin. Phys. B, 2017, 26(4): 040303.
[12] Two-step quantum secure direct communication scheme with frequency coding
Xue-Liang Zhao(赵学亮), Jun-Lin Li(李俊林), Peng-Hao Niu(牛鹏皓), Hong-Yang Ma(马鸿洋), Dong Ruan(阮东). Chin. Phys. B, 2017, 26(3): 030302.
[13] Probabilistic direct counterfactual quantum communication
Sheng Zhang(张盛). Chin. Phys. B, 2017, 26(2): 020304.
[14] Optimal multi-photon entanglement concentration with the photonic Faraday rotation
Lan Zhou(周澜), Dan-Dan Wang(王丹丹), Xing-Fu Wang(王兴福), Shi-Pu Gu(顾世浦), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(2): 020302.
[15] Quantum dual signature scheme based on coherent states with entanglement swapping
Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎). Chin. Phys. B, 2016, 25(8): 080306.
No Suggested Reading articles found!