Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS2 as a saturable absorber
Xia Han-Ding (夏汉定), Li He-Ping (李和平), Lan Chang-Yong (兰长勇), Li Chun (李春), Deng Guang-Lei (邓光磊), Li Jian-Feng (李剑峰), Liu Yong (刘永)
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract Passive harmonic mode locking of an erbium-doped fiber laser based on few-layer molybdenum disulfide (MoS2) saturable absorber (SA) is demonstrated. The few-layer MoS2 is prepared by the chemical vapor deposition (CVD) method and then transferred onto the end face of a fiber connector to form a fiber-compatible MoS2 SA. The 20th harmonic mode-locked pulses at 216-MHz repetition rate are stably generated with a pulse duration of 1.42 ps and side-mode suppression ratio (SMSR) of 36.1 dB. The results confirm that few-layer MoS2 can serve as an effective SA for mode-locked fiber lasers.
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61378028, 61421002, 61475030, and 61377042), the National Basic Research Program of China (Grant No. 2012CB315701), and the New Century Excellent Talents Program in University, China (Grant No. NCET-13-0092).
Corresponding Authors:
Li He-Ping
E-mail: oehpli@uestc.edu.cn
Cite this article:
Xia Han-Ding (夏汉定), Li He-Ping (李和平), Lan Chang-Yong (兰长勇), Li Chun (李春), Deng Guang-Lei (邓光磊), Li Jian-Feng (李剑峰), Liu Yong (刘永) Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS2 as a saturable absorber 2015 Chin. Phys. B 24 084206
[1]
Sibbett W, Lagatsky A and Brown C 2012 Opt. Express 20 6989
[2]
Hasan T, Sun Z, Wang F, Bonaccorso F, Tan P H, Rozhin A G and Ferrari A C 2009 Adv. Mater. 21 3874
[3]
Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077
[4]
Popa D, Sun Z, Hasan T, Torrisi F, Wang F and Ferrari A 2011 Appl. Phys. Lett. 98 073106
[5]
Yamashita S 2012 J. Lightwave Technol. 30 427
[6]
Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W and Abramski K M 2013 Opt. Express 21 12797
[7]
Li H P, Xia H D, Wang Z G, Zhang X X, Chen Y F, Zhang S J, Tang X G and Liu Y 2014 Chin. Phys. B 23 024209
[8]
Yang J M, Yang Q, Liu J, Wang Y G and Tsang Y H 2013 Chin. Phys. B 22 094210
[9]
Bonaccorso F and Sun Z 2014 Opt. Mater. Express 4 63
[10]
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[11]
Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[12]
Wang K, Wang J, Fan J, Lotya M, O'Neill A, Fox D, Feng Y, Zhang X, Jiang B and Zhao Q 2013 ACS Nano 7 9260
[13]
Ouyang Q, Yu H, Zhang K and Chen Y J 2014 J. Mater. Chem. C 2 6319
[14]
Zhang H, Lu S, Zheng J, Du J, Wen S, Tang D and Loh K 2014 Opt. Express 22 7249
[15]
Du J, Wang Q, Jiang G, Xu C, Zhao C, Xiang Y, Chen Y, Wen S and Zhang H 2014 Sci. Rep. 4 6346
[16]
Xia H, Li H, Lan C, Li C, Zhang X, Zhang S and Liu Y 2014 Opt. Express 22 17341
[17]
Liu H, Luo A P, Wang F Z, Tang R, Liu M, Luo Z C, Xu W C, Zhao C J and Zhang H 2014 Opt. Lett. 39 4591
[18]
Mikulla B, Leng L, Sears S, Collings B, Arend M and Bergman K 1999 IEEE Photon. Technol. Lett. 11 418
[19]
Cundiff S T 2007 Nature 450 1175
[20]
Kim J, Park M, Perrott M and Kärtner F 2008 Opt. Express 16 16509
[21]
Collings B, Bergman K and Knox W 1998 Opt. Lett. 23 123
[22]
Zhang Z, Zhan L, Yang X, Luo S and Xia Y 2007 Laser Phys. Lett. 4 592
[23]
Jun C S, Choi S Y, Rotermund F, Kim B Y and Yeom D I 2012 Opt. Lett. 37 1862
[24]
Sobon G, Sotor J and Abramski K M 2012 Appl. Phys. Lett. 100 161109
[25]
Luo Z C, Liu M, Liu H, Zheng X W, Luo A P, Zhao C J, Zhang H, Wen S C and Xu W C 2013 Opt. Lett. 38 5212
[26]
Sotor J, Sobon G, Macherzynski W and Abramski K 2014 Laser Phys. Lett. 11 055102
[27]
Liu M, Zheng X W, Qi Y L, Liu H, Luo A P, Luo Z C, Xu W C, Zhao C J and Zhang H 2014 Opt. Express 22 22841
[28]
Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson B I, Idrobo J C, Ajayan P M and Lou J 2013 Nat. Mater. 12 754
[29]
Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A and Baillargeat D 2012 Adv. Funct. Mater. 22 1385
[30]
Gui L, Yang X, Zhao G, Yang X, Xiao X, Zhu J and Yang C 2011 Appl. Opt. 50 110
[31]
Tang D Y, Zhao L M, Zhao B and Liu A Q 2005 Phys. Rev. A 72 043816
[32]
Meng Y, Zhang S, Li X, Li H, Du J and Hao Y 2012 Laser Phys. Lett. 9 537
[33]
Tang D Y, Zhao B, Zhao L M and Tam H Y 2005 Phys. Rev. E 72 016616
[1]
Direct visualization of structural defects in 2D semiconductors Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.