Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 050301    DOI: 10.1088/1674-1056/24/5/050301
GENERAL Prev   Next  

Ponderomotive squeezing and entanglement ina ring cavity with two vibrational mirrors

Feng Xiao-Min, Xiao Yin, Yu Ya-Fei, Zhang Zhi-Ming
Laboratory of Nanophotonic Functional Materials and Devices (SIPSE), Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China

We investigate the properties of the ponderomotive squeezing and the entanglements in a ring cavity with two vibrational mirrors. In the part about squeezing, we find that the squeezing spectrum of the transmitted field shows a distinct feature when the two vibrational mirrors have different frequencies. We also study the effects of some external parameters such as the temperature and the laser power on the degree of squeezing. In the part concerning entanglement, we study the entanglements between the cavity field and one of the vibrational mirrors, and that between the two vibrational mirrors, with emphasis focusing on the robustness of entanglements with respect to the environment temperature.

Keywords:  optomechanical cavity      squeezing      entanglement  
Received:  30 October 2014      Revised:  27 November 2014      Published:  05 May 2015
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  

Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Natural Science Foundation of China (Grant Nos. 61378012 and 60978009), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124407110009), the National Basic Research Program of China (Grant Nos. 2011CBA00200 and 2013CB921804), and the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1243).

Corresponding Authors:  Zhang Zhi-Ming     E-mail:
About author:  03.65.Ta; 03.65.Ud; 42.50.Lc

Cite this article: 

Feng Xiao-Min, Xiao Yin, Yu Ya-Fei, Zhang Zhi-Ming Ponderomotive squeezing and entanglement ina ring cavity with two vibrational mirrors 2015 Chin. Phys. B 24 050301

[1] Braginsky V B and Khalili F Y 1992 Quantum Measurement (Cambridge: Cambridge University Press)
[2] Nielson M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[3] Kippenberg T J and Vahala K J 2008 Science 321 1172
[4] Marquardt F and Girvin S M 2009 Physics 2 40
[5] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803
[6] Weis S, Riviére R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[7] Wilson-Rae I, Nooshi N, Zwerger W and Kippenberg T J 2007 Phys. Rev. Lett. 99 093901
[8] Liu Y C, Hu Y W, Wong C W and Xiao Y F 2013 Chin. Phys. B 22 114213
[9] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[10] Hartmann M J and Plenio M B 2008 Phys. Rev. Lett. 101 200503
[11] Clerk A A, Marquardt F and Jacobs K 2008 New J. Phys. 10 095010
[12] Fabre C, Pinard M, Bourzeix S, Heidmann A, Giacobino E and Reynaud S 1994 Phys. Rev. A 49 1337
[13] Huang S M and Agarwal G S 2009 New J. Phys. 11 103044
[14] Braginsky V B and Manukin A B 1967 Sov. Phys. JETP 25 653
[15] Brooks D W C, Thierry B, Sydney S, Purdy T P, Nathan B and Stamper-Kurn D M 2012 Nature 488 476
[16] Safavi-Naeini A H, Simon G, Hill J T, Jasper C, Markus A and Oskar P 2013 Nature 500 185
[17] Purdy T P, Yu P L, Peterson R W, Kampel N S and Regal C A 2013 Phys. Rev. X 3 031012
[18] Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M and Harris J G E 2008 Nature 452 72
[19] Teufel J D, Castellanos-Beltran M A, Harlow J W and Lehnert K W 2009 Nat. Nano. 4 820
[20] Ma P C, Xiao Y, Yu Y F and Zhang Z M 2014 Opt. Express 22 3621
[21] Brennecke F, Ritter S, Donner T and Esslinger T 2008 Science 322 235
[22] Sun Q, Hu X, Ji A C and Liu W M 2011 Phys. Rev. A 83 043606
[23] Xiao Y, Yu Y F and Zhang Z M 2014 Opt. Express 22 17979
[24] Huang S M 2014 J. Phys. B: At. Mol. Opt. Phys. 47 055504
[25] Mancini S, Giovannetti V, Vitali D and Tombesi P 2002 Phys. Rev. Lett. 88 120401
[26] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag)
[27] Mancini S and Tombesi P 1994 Phys. Rev. A 49 4055
[28] Gardiner C W and Zoller P 2004 Quantum Noise (Berlin: Springer-Verlag)
[29] Kleckner D, Marshall W, de Dood Michiel J A, Dinyari K N, Pors B J, Irvine W T M and Bouwmeester D 2006 Phys. Rev. Lett. 96 173901
[30] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds K R W 2011 Nature 471 204
[31] DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288
[32] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[33] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A 70 022318
[1] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[2] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[3] Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms
Chong Yang(杨崇), Dong-Xiao Li(李冬啸), and Xiao-Qiang Shao(邵晓强). Chin. Phys. B, 2021, 30(2): 023201.
[4] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[5] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[6] Steady and optimal entropy squeezing for three types of moving three-level atoms coupled with a single-mode coherent field
Wen-Jin Huang(黄文进) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010304.
[7] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[8] Effects of postselected von Neumann measurement on the properties of single-mode radiation fields
Yusuf Turek(玉素甫·吐拉克). Chin. Phys. B, 2020, 29(9): 090302.
[9] Detection and quantification of entanglement with measurement-device-independent and universal entanglement witness
Zhi-Jin Ke(柯芝锦), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Yu Meng(孟雨), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Ya Xiao(肖芽), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(8): 080301.
[10] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[11] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[12] Non-Markovian entanglement transfer to distant atoms in a coupled superconducting resonator
Qingxia Mu(穆青霞), Peiying Lin(林佩英). Chin. Phys. B, 2020, 29(6): 060304.
[13] Quantum entanglement dynamics based oncomposite quantum collision model
Xiao-Ming Li(李晓明), Yong-Xu Chen(陈勇旭), Yun-Jie Xia(夏云杰), Qi Zhang(张琦), Zhong-Xiao Man(满忠晓). Chin. Phys. B, 2020, 29(6): 060302.
[14] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[15] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
No Suggested Reading articles found!