Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 125201    DOI: 10.1088/1674-1056/24/12/125201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Study of hysteresis behavior in reactive sputtering of cylindrical magnetron plasma

H. Kakatia, S. M. Borahb
a Jorhat Institute of Science and Technology, Jorhat 10, Assam, India;
b Department of Applied Sciences, Gauhati University, Jalukbari, Guwahati-781014, Assam, India
Abstract  In order to make sufficient use of reactive cylindrical magnetron plasma for depositing compound thin films, it is necessary to characterize the hysteresis behavior of the discharge. Cylindrical magnetron plasmas with different targets namely titanium and aluminium are studied in an argon/oxygen and an argon/nitrogen gas environment respectively. The aluminium and titanium emission lines are observed at different flows of reactive gases. The emission intensity is found to decrease with the increase of the reactive gas flow rate. The hysteresis behavior of reactive cylindrical magnetron plasma is studied by determining the variation of discharge voltage with increasing and then reducing the flow rate of reactive gas, while keeping the discharge current constant at 100 mA. Distinct hysteresis is found to be formed for the aluminium target and reactive gas oxygen. For aluminium/nitrogen, titanium/oxygen and titanium/nitrogen, there is also an indication of the formation of hysteresis; however, the characteristics of variation from metallic to reactive mode are different in different cases. The hysteresis behaviors are different for aluminium and titanium targets with the oxygen and nitrogen reactive gases, signifying the difference in reactivity between them. The effects of the argon flow rate and magnetic field on the hysteresis are studied and explained.
Keywords:  cylindrical magnetron      sputtering      reactive mode      hysteresis  
Received:  25 June 2015      Revised:  13 August 2015      Published:  05 December 2015
PACS:  52.20.-j (Elementary processes in plasmas)  
  51.60.+a (Magnetic properties)  
  52.20.Hv (Atomic, molecular, ion, and heavy-particle collisions)  
  52.55.-s (Magnetic confinement and equilibrium)  
Fund: Project supported by the Department of Science and Technology, Government of India and Council of Scientific and Industrial Research, India.
Corresponding Authors:  S. M. Borah     E-mail:  sankarmoni@gmail.com

Cite this article: 

H. Kakati, S. M. Borah Study of hysteresis behavior in reactive sputtering of cylindrical magnetron plasma 2015 Chin. Phys. B 24 125201

[1] Mednikarov B, Spasov G and Babeva T 2005 J. Optoelectron. Adv. Mater. 7 1421
[2] Bielawski M 2006 Surf. Coat. Technol. 200 3987
[3] Sarakinos K, Alami J, Karimi P M, Severin D and Wuttig M 2007 J. Phys. D: Appl. Phys. 40 778
[4] Jayaraj M K, Antony A and Ramachandran M 2002 Bull. Mater. Sci. 25 227
[5] Schmidt N W, Totushek T S, Kimes W A, Callender D R and Doyle J R 2003 J. Appl. Phys. 94 5514
[6] Wohlmuth W and Adesida I 2005 Thin Solid Films 479 223
[7] Reddy Y K V, Mergel D, Reuter S, Buck V and Sulkowski M 2006 J. Phys. D: Appl. Phys. 39 1161
[8] Tomozeiu N 2006 J. Optoelectron. Adv. Mater. 8 769
[9] Kakati H, Pal A R, Bailung H and Chutia J 2007 J. Appl. Phys. 101 083304
[10] Kakati H, Pal A R, Bailung H and Chutia J 2009 Appl. Surf. Sci. 255 7403
[11] Arnell R D, Colligon J S, Minnebaev K F and Yurasova V E 1996 Vacuum 47 425
[12] Diesselberg M, Stock H R and Mayr P 2004 Surf. Coat. Technol. 177 399
[13] Borah S M, Pal A R, Bailung H and Chutia J 2008 Appl. Surf. Sci. 254 5760
[14] Gardner R A, Peterson P J and Kennedy T N 1997 J. Vac. Sci. Technol. 14 1139
[15] Nowicki R S 1997 J. Vac. Sci. Technol. 14 127
[16] Pratt I H 1969 Thin Solid Films 3 R23
[17] Deshpandey C, Holland L 1982 Thin Solid Films 96 265
[18] Goranchev B, Orlinov V, Tsaneva V and Petrov I 1978 Thin Solid Films 52 365
[19] Thornton J A and Lamb J L 1981 Thin Solid Films 83 377
[20] Bhatia C S, Guthmiller G and Spool A M 1989 J. Vac. Sci. Technol. A 7 1298
[21] Roth T, Kloos K H and Broszeit E 1987 Thin Solid Films 153 123
[22] Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B and Burns M 1994 J. Appl. Phys. 76 1363
[23] Edgar J H 1992 J. Mater. Res. 7 235
[24] Berg S and Nyberg T 2005 Thin Solid Films 476 215
[25] Borah S M, Bailung H, Pal A R and Chutia J 2008 J. Phys. D: Appl. Phys. 41 195205
[26] Borah S M, Bailung H and Chutia J 2010 Prog. Color Colorants Coat. 3 74
[27] Borah S M, Pal A R, Bailung H and Chutia J 2011 Chin. Phys. B 20 014701
[28] Borah S M 2013 J. Mater. 2013 852859
[29] Borah S M 2014 J. Phys. Sci. Appl. 4 440
[1] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
[2] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[3] Improvement of high-frequency properties of Co2FeSi Heusler films by ultrathin Ru underlayer
Cuiling Wang(王翠玲), Shouheng Zhang(张守珩), Shandong Li(李山东), Honglei Du(杜洪磊), Guoxia Zhao(赵国霞), Derang Cao(曹德让). Chin. Phys. B, 2020, 29(4): 046202.
[4] Bifurcation and chaos characteristics of hysteresis vibration system of giant magnetostrictive actuator
Hong-Bo Yan(闫洪波), Hong Gao(高鸿), Gao-Wei Yang(杨高炜), Hong-Bo Hao(郝宏波), Yu Niu(牛禹), Pei Liu(刘霈). Chin. Phys. B, 2020, 29(2): 020504.
[5] Nonlinear resonances phenomena in a modified Josephson junction model
Pernel Nguenang, Sandrine Takam Mabekou, Patrick Louodop, Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2020, 29(12): 120501.
[6] High-throughput fabrication and semi-automated characterization of oxide thin film transistors
Yanbing Han(韩炎兵), Sage Bauers, Qun Zhang(张群), Andriy Zakutayev. Chin. Phys. B, 2020, 29(1): 018502.
[7] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
[8] Hysteresis effect in current-voltage characteristics of Ni/n-type 4H-SiC Schottky structure
Hao Yuan(袁昊), Qing-Wen Song(宋庆文), Chao Han(韩超), Xiao-Yan Tang(汤晓燕), Xiao-Ning He(何晓宁), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门). Chin. Phys. B, 2019, 28(11): 117303.
[9] Magnetoresistance hysteresis in topological Kondo insulator SmB6 nanowire
Ling-Jian Kong(孔令剑), Yong Zhou(周勇), Hua-Ding Song(宋化鼎), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2019, 28(10): 107501.
[10] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
[11] Modeling and identification of magnetostrictive hysteresis with a modified rate-independent Prandtl-Ishlinskii model
Wei Wang(王伟), Jun-en Yao(姚骏恩). Chin. Phys. B, 2018, 27(9): 098503.
[12] Effect of flash thermal annealing by pulsed current on rotational anisotropy in exchange-biased NiFe/FeMn film
Zhen Wang(王振), Shi-Jie Tan(谭士杰), Jun Li(李俊), Bo Dai(代波), Yan-Ke Zou(邹延珂). Chin. Phys. B, 2018, 27(8): 087504.
[13] Interfacial effect on the reverse of magnetization and ultrafast demagnetization in Co/Ni bilayers with perpendicular magnetic anisotropy
Zi-Zhao Gong(弓子召), Wei Zhang(张伟), Wei He(何为), Xiang-Qun Zhang(张向群), Yong Liu(刘永), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(5): 057501.
[14] A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates
Yuhong Wang(王玉红), Mingli Wang(王明利), Lin Shen(沈琳), Yanying Zhu(朱艳英), Xin Sun(孙鑫), Guochao Shi(史国超), Xiaona Xu(许晓娜), Ruifeng Li(李瑞峰), Wanli Ma(马万里). Chin. Phys. B, 2018, 27(1): 017801.
[15] Effect of hydroxyl on dye-sensitized solar cells assembled with TiO2 nanorods
Lijian Meng(孟立建), Tao Yang(杨涛), Sining Yun(云斯宁), Can Li(李灿). Chin. Phys. B, 2018, 27(1): 016802.
No Suggested Reading articles found!