Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 125202    DOI: 10.1088/1674-1056/24/12/125202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

A computational modeling study on the helium atmospheric pressure plasma needle discharge

Qian Mu-Yang (钱沐杨)a, Yang Cong-Ying (杨从影)b, Liu San-Qiu (刘三秋)a, Wang Zhen-Dong (王震东)a, Lv Yan (吕燕)a, Wang De-Zhen (王德真)c
a Department of Physics, Nanchang University, Nanchang 330031, China;
b School of Medical, Nanchang University, Nanchang 330031, China;
c School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023, China
Abstract  A two-dimensional coupled model of neutral gas flow and plasma dynamics is employed to investigate the streamer dynamics in a helium plasma needle at atmospheric pressure. A parametric study of the streamer propagation as a function of needle tip curvature radius and helium gas flow rate is presented. The key chemical reactions at the He/air mixing layer which drive the streamer propagation are the direct ionization via collision with electrons, the Penning effect being not so crucial. With increasing the gas flow rate from 0.2 standard liter per minute (SLM) to 0.8 SLM, however, the emissions resulting from reactive oxygen and nitrogen species change from a solid circle to a hollow profile and the average streamer propagation velocity decreases. Air impurities (backdiffusion from ambient air) in the helium jet result in a significant increase in the streamer propagation velocity. Besides, with decreasing the tip curvature radiusfrom 200 μ to 100 μ, the electron avalanche process around the near-tip region is more pronounced. However, the spatially resolved plasma parameters distributions (electron, helium metastables, ground state atomic oxygen, etc.) remain almost the same, except that around the near-tip region where their peak values are more than doubled.
Keywords:  atmospheric pressureplasma needle      fluid model      streamer propagation  
Received:  12 July 2015      Revised:  15 August 2015      Accepted manuscript online: 
PACS:  52.50.Dg (Plasma sources)  
  52.65.Kj (Magnetohydrodynamic and fluid equation)  
  52.80.-s (Electric discharges)  
Fund: Project supported partly by the National Natural Science Foundation of China (Grant No. 11465013), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB212012), and in part by the International Science and Technology Cooperation Program of China (Grant No. 2015DFA61800).
Corresponding Authors:  Qian Mu-Yang     E-mail:  qianmuyang@ncu.edu.cn

Cite this article: 

Qian Mu-Yang (钱沐杨), Yang Cong-Ying (杨从影), Liu San-Qiu (刘三秋), Wang Zhen-Dong (王震东), Lv Yan (吕燕), Wang De-Zhen (王德真) A computational modeling study on the helium atmospheric pressure plasma needle discharge 2015 Chin. Phys. B 24 125202

[1] Deng S X, Cheng C, Ni G H, Meng Y D and Chen H 2010 Chin. Phys. B 19 105203
[2] Ostrikov K, Neyts E C and Meyyappan M 2013 Adv. Phys. 62 113
[3] Zhang X, Liu D, Zhou R, Song Y, Sun Y, Zhang Q, Niu J, Fan H and Yang S 2014 Appl. Phys. Lett. 104 043702
[4] Fridman G, Brooks A, Galasubramanian M, Fridman A, Gutsol A, Vasilets V, Ayan H and Friedman G 2007 Plasma Processes Polym. 4 370
[5] Cheng C, Shen J, Xiao D Z, Xie H B, Lan Y, Fang S D, Meng Y D and Chu P K 2014 Chin. Phys. B 23 075204
[6] Nie Q Y, Cao Z, Ren C S, Wang D Z and Kong M G 2009 New J. Phys. 11 115015
[7] Yan W, Liu F C, Sang C F and Wang D Z 2015 Chin. Phys. B 24 065203
[8] Sankaran K J, Kurian J, Chen H C, Dong C L, Lee C Y, Tai N H and Lin I N 2012 J. Phys. D: Appl. Phys. 45 365303
[9] Goree J, Liu B and Drake D 2006 J. Phys. D: Appl. Phys. 39 3479
[10] Sands B, Ganguly B and Tachibana K 2008 Appl. Phys. Lett. 92 151503
[11] Ye R and Zheng W 2008 Appl. Phys. Lett. 93 071502
[12] Lu X, Laroussi M and Puech V 2012 Plasma Sources Sci. Technol. 21 034005
[13] Wu S, Wang Z, Huang Q, Tan X, Lu X and Ostrikov K 2013 Phys. Plasmas 20 023503
[14] Shi J J, Zhong F C, Zhang J, Liu D W and Kong M G 2008 Phys. Plasmas 15 013504
[15] Sakiyama Y, Graves D B, Jarrige J and Laroussi M 2010 Appl. Phys. Lett. 96 41501
[16] Lu X, Naidis G V, Laroussi M and Ostrikov K 2014 Phys. Rep. 540 123
[17] Breden D, Miki K and Raja L2012 Plasma Sources Sci. Technol. 21 034011
[18] Lu X and Laroussi M 2006 J. Appl. Phys. 100 063302
[19] Naidis G V 2010 J. Phys. D: Appl. Phys. 43 402001
[20] Naidis G V 2011 J. Phys. D: Appl. Phys. 44 215203
[21] Breden D, Miki K and Raja L L 2012 Plasma Sources Sci. Technol. 21 034011
[22] Chang Z S, Jiang N, Zhang G J and Cao Z X 2014 J. Appl. Phys. 115 103301
[23] Wu S, Lu X and Pan Y 2014 Phys. Plasmas 21 073509
[24] Jansky J and Bourdon A 2011 Appl. Phys. Lett. 99 161504
[25] Li Q, Li J T, Zhu W C, Zhu X M and Pu Y K 2009 Appl. Phys. Lett. 95 141502
[26] Qian M Y, Ren C S, Wang D Z, Fan Q Q, Nie Q Y, Wen X Q and Zhang J L 2012 IEEE Trans. Plasma Sci. 40 1134
[27] Li S Z, Huang W T and Wang D Z 2009 Phys. Plasmas 16 093501
[28] Qian M Y, Ren C S, Wang D Z, Zhang J L and Wei G D 2010 J. Appl. Phys. 107 063303
[29] Sakiyama Y and Graves D B 2009 Plasma Sources Sci. Technol. 18 025022
[30] Liu D X, Bruggeman P, Iza F, Rong M Z and Kong M G 2010 Plasma Sources Sci. Technol. 19 025018
[31] Liu X Y, Pei X K, Lu X P and Liu D W 2014 Plasma Sources Sci. Technol. 23 035007
[32] Park G Y, Lee H W, Kim G C and Lee J K 2008 Plasma Process Polym. 5 569
[33] Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
[34] Ellis H W, Pai R Y, McDaniel E W, Mason E A and Viehland L A 1976 At. Data Nucl. Data Tables 17 177
[35] Kee R J, Dixon-Lewis G, Warnatz J, Coltrin M E and Miller J A 1986 Sandia Report SAND86-8246B
[36] Bird B B, Stewart W E and Lightfoot E N 2002 Transport Phenomena (New York: Wiley)
[37] Sakiyama Y, Knake N, Schröder D, Winter J, Gathen V S der and Graves D B 2010 Appl. Phys. Lett. 97 151501
[1] Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model
Yue Geng(耿悦), Pei-Zhan Li(李佩展), Jia-Qiang Zhong(钟家强), Wen Zhang(张文), Zheng Wang(王争), Wei Miao(缪巍), Yuan Ren(任远), and Sheng-Cai Shi(史生才). Chin. Phys. B, 2021, 30(9): 098501.
[2] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[3] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[4] Similarity principle of microwave argon plasma at low pressure
Xiao-Yu Han(韩晓宇), Jun-Hong Wang(王均宏), Mei-E Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yu-Jian Li(李雨键). Chin. Phys. B, 2018, 27(8): 085206.
[5] Numerical study on discharge characteristics influenced by secondary electron emission in capacitive RF argon glow discharges by fluid modeling
Lu-Lu Zhao(赵璐璐), Yue Liu(刘悦), Tagra Samir. Chin. Phys. B, 2018, 27(2): 025201.
[6] Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows
Shu-Xia Zhao(赵书霞), Zhao Feng(丰曌). Chin. Phys. B, 2018, 27(12): 124701.
[7] Influence of a centered dielectric tube on inductively coupled plasma source: Chamber structures and plasma characteristics
Zhen-Hua Bi(毕振华), Yi Hong(洪义), Guang-Jiu Lei(雷光玖), Shuai Wang(王帅), You-Nian Wang(王友年), Dong-Ping Liu(刘东平). Chin. Phys. B, 2017, 26(7): 075203.
[8] Effect of air breakdown on microwave pulse energy transmission
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新), Panpan Shu(舒盼盼). Chin. Phys. B, 2017, 26(2): 029201.
[9] Numerical simulation of a direct current glow discharge in atmospheric pressure helium
Zeng-Qian Yin(尹增谦), Yan Wang(汪岩), Pan-Pan Zhang(张盼盼), Qi Zhang(张琦), Xue-Chen Li(李雪辰). Chin. Phys. B, 2016, 25(12): 125203.
[10] Conversion of an atomic to a molecular argon ion and low pressure argon relaxation
M N Stankov, A P Jovanović, V Lj Marković, S N Stamenković. Chin. Phys. B, 2016, 25(1): 015204.
[11] Two-dimensional numerical study of an atmospheric pressurehelium plasma jet with dual-power electrode
Yan Wen (晏雯), Liu Fu-Cheng (刘福成), Sang Chao-Feng (桑超峰), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(6): 065203.
[12] Short-pulse high-power microwave breakdown at high pressures
Zhao Peng-Cheng (赵朋程), Liao Cheng (廖成), Feng Ju (冯菊). Chin. Phys. B, 2015, 24(2): 025101.
[13] Effect of microwave frequency on plasma formation in air breakdown at atmospheric pressure
Zhao Peng-Cheng (赵朋程), Guo Li-Xin (郭立新), Li Hui-Min (李慧敏). Chin. Phys. B, 2015, 24(10): 105102.
[14] Mode transition in homogenous dielectric barrier discharge in argon at atmospheric pressure
Liu Fu-Cheng (刘富成), He Ya-Feng (贺亚峰), Wang Xiao-Fei (王晓菲). Chin. Phys. B, 2014, 23(7): 075209.
[15] Validity of the two-term Boltzmann approximation employed in the fluid model for high-power microwave breakdown in gas
Zhao Peng-Cheng (赵朋程), Liao Cheng (廖成), Yang Dan (杨丹), Zhong Xuan-Ming (钟选明). Chin. Phys. B, 2014, 23(5): 055101.
No Suggested Reading articles found!