Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 107802    DOI: 10.1088/1674-1056/24/10/107802

Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots

Qi Li-Meia b, Li Chaoa, Fang Guang-Youa, Li Shi-Chaoa
a Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China;
b School of Electronic Engineering, Bejing University of Posts and Communications, Beijing 100876, China

A dual-band terahertz (THz) filter consisting of two different cross slots is designed and fabricated in a single molybdenum layer. Experimental verification by THz time-domain spectroscopy indicates good agreement with the simulation results. Owing to the weak coupling between the two neighboring cross slots in the unit cell, good selectivity performance can be easily achieved, both in the lower and higher bands, by tuning the dimensions of the two crosses. The physical mechanisms of the dual-band resonant are clarified by using three differently configured filters and electric field distribution diagrams. Owing to the rotational symmetry of the cross-shaped filter, the radiation at normal incidence is insensitive to polarization. Compared with the THz dual-band filters that were reported earlier, these filters also have the advantages of easy fabrication and low cost, which would find applications in dual-band sensors, THz communication systems, and emerging THz technologies.

Keywords:  dual-band      filters      metamaterial      terahertz  
Received:  03 May 2015      Revised:  18 June 2015      Published:  05 October 2015
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  84.30.Vn (Filters)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11174280 and 61107030), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. YYYJ-1123), and the China Postdoctoral Science Foundation (Grant No. 2012M520377).

Corresponding Authors:  Li Chao     E-mail:

Cite this article: 

Qi Li-Mei, Li Chao, Fang Guang-You, Li Shi-Chao Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots 2015 Chin. Phys. B 24 107802

[1] Zandonella C 2003 Nature 424 721
[2] Siegel P H 2004 IEEE Trans. Microwave Theory Technol. 52 2438
[3] Chan W L, Moravec M L, Baraniuk R G and Mittleman D M 2008 Opt. Lett. 33 974
[4] Melo A M, Gobbi A L, Piazzetta M H O and Silva A M P A da 2012 Adv. Opt. Technol. 2012 530512
[5] Gallant A J, Kaliteevski M A, Brand S, Wood D, Petty M, Abram R A and Chamberlain J M 2007 J. Appl. Phys. 102 023102
[6] Nazmov V, Reznikova E, Mathis Y L, Mathuni J, Müller A, Rudych P, Last A and Saile V 2009 Nucl. Instrum. Methods Phys. Res. A 603 150
[7] Zhu Y, Vegesna S, Kuryatkov V, Saed M M and Bernussi A A 2012 Opt. Lett. 37 296
[8] Liang L, Jin B, Wu J, Huang Y, Ye Z, Huang X, Zhou D and Wang G 2013 Appl. Phys. B 113 285
[9] Beasley A J, Murowinski R and Tarenghi M 2006 Proc. SPIE 6267 2
[10] Tarenghi M 2008 Astrophys. Space Sci. 313 1
[11] Song H J and Nagatsuma T 2011 IEEE Trans. Terahertz Sci. Technol. 1 256
[12] AkyildizAuthor Vitae L F, JornetAuthor Vitae J M and Han C 2014 Phys. Commun. 12 16
[13] Wen Q Y, Zhang H W, Xie Y S, Yang Q H and Liu Y L 2009 Appl. Phys. Lett. 95 241111
[14] Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X and Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102
[15] Ma Y, Chen Q, Grant J, Shimul Saha C, Khalid A and David R S C 2011 Opt. Lett. 36 945
[16] Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W and Cui T 2012 Appl. Phys. Lett. 101 154102
[17] Guo C, Sun H and Lu X 2008 Prog. Electromagn. Res. B 9 137
[18] Lu M, Li W and Brown E R 2011 Opt. Lett. 36 1071
[19] Lan F, Yang Z Q, Qi L M, Gao X and Shi Z J 2014 Opt. Lett. 39 1709
[20] Lan F, Gao X and Qi L M 2014 Acta Phys. Sin. 63 104209(in chinese)
[21] Munk B A 2000 Frequency Selective Surfaces: Theory and Design (New York: John Wiley and Sons Inc.) p. 393
[1] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[2] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[3] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[4] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[5] Multi-functional vanadium dioxide integrated metamaterial for terahertz wave manipulation
Jian-Xing Zhao(赵建行), Jian-Lin Song(宋建林), Yao Zhou(周姚), Rui-Long Zhao(赵瑞龙), Yi-Chao Liu(刘艺超), Jian-Hong Zhou(周见红). Chin. Phys. B, 2020, 29(9): 094205.
[6] Symmetry-broken silicon disk array as an efficient terahertz switch working with ultra-low optical pump power
Zhanghua Han(韩张华), Hui Jiang(姜辉), Zhiyong Tan(谭智勇), Juncheng Cao(曹俊诚), Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(8): 084209.
[7] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[8] Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors
Zhi-Yong Tan(谭智勇), Wen-Jian Wan(万文坚), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(8): 084212.
[9] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[10] A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode
Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成). Chin. Phys. B, 2020, 29(7): 078704.
[11] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[12] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[13] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[14] Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band
Tao Xie(谢涛), Meng-Ting Chen(陈梦婷), Jian Chen(陈健), Feng Lu(陆风), Da-Wei An(安大伟). Chin. Phys. B, 2020, 29(7): 074102.
[15] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
No Suggested Reading articles found!