Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 096801    DOI: 10.1088/1674-1056/23/9/096801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Characterization of tetragonal distortion in a thick Al0.2Ga0.8N epilayer with an AlN interlayer by Rutherford backscattering/channeling

Wang Huan (王欢)a b, Yao Shu-De (姚淑德)a
a State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China;
b Chinese Academy of Engineering Physics, Mianyang 621900, China
Abstract  An Al0.2Ga0.8N/AlN/Al0.2Ga0.8N heterostructure was grown by metalorganic chemical vapor deposition on a sapphire (0001) substrate with a thick (>1 μm) GaN intermediate layer. The Al composition was determined by Rutherford backscattering (RBS). Using the channeling scan around an off-normal [1213] axis in the (1010) plane of the Al0.2Ga0.8N layer, the tetragonal distortion eT, which is caused by the elastic strain in the epilayer, is investigated. The results show that eT in the high-quality Al0.2Ga0.8N layer is dramatically released by the AlN interlayer from 0.66% to 0.27%.
Keywords:  AlGaN      Rutherford backscattering/channeling      elastic strain  
Received:  17 November 2013      Revised:  23 February 2014      Accepted manuscript online: 
PACS:  68.55.-a (Thin film structure and morphology)  
  73.61.Ey (III-V semiconductors)  
  82.80.Yc (Rutherford backscattering (RBS), and other methods ofchemical analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 91226202).
Corresponding Authors:  Yao Shu-De     E-mail:  sdyao@pku.edu.cn

Cite this article: 

Wang Huan (王欢), Yao Shu-De (姚淑德) Characterization of tetragonal distortion in a thick Al0.2Ga0.8N epilayer with an AlN interlayer by Rutherford backscattering/channeling 2014 Chin. Phys. B 23 096801

[1] Amano H, Sawaki N, Akasaki I and Toyoda Y 1986 Appl. Phys. Lett. 48 353
[2] Amano H, Kitoh M, Hiramatsu K and Akasaki I 1990 J. Electrochem. Soc. 137 1639
[3] Amano H, Kito M, Hiramatsu K and Akasaki I 1989 Jpn. J. Appl. Phys. 28 L2112
[4] Koide Y, Itoh N, Itoh K, Sawaki N and Akasaki I 1988 Jpn. J. Appl. Phys. 27 1156
[5] Simth M D, Sadler T C, Li H N, Zubialevich V C and Parbrook P J 2013 Appl. Phys. Lett. 103 081602
[6] Chu W K, Mayer J W and Nicolet M A 1978 Backscattering Spectrometry (New York: Academic)
[7] Wang H, Yao S D, Pan Y B and Zhang G Y 2007 Acta Phys. Sin. 56 3350 (in Chinese)
[8] Wang H, Chen T X and Yao S D 2008 Nucl. Instrum. Methods B 266 1141
[9] Wu M F, Vantomme A, Hogg S, Pattyn H, Langouche G, van der Stricht W, Jocobs K and Moerman I 1999 Appl. Phys. Lett. 74 365
[10] Wu M F, Yao S D, Vantomme A, Hogg S, Langouche G, Li J and Zhang G Y 1999 J. Vac. Sci. Technol. B 17 1502
[11] Doolittle L R 1985 Nucl. Instrum. Methods Phys. Res. B 9 344
[12] Williams C K, Glisson T H, Hauser J R and Littlejohn M A 1978 J. Electron. Mater. 7 639
[13] Pan C K, Zheng D C, Finstad T G, Chu W K, Speriosu V S, Nicolet M A and Barrett J H 1985 Phys. Rev. B 31 1270
[14] Reiher A, Blasing J, Dadgar A, Diez A and Krost A 2003 J. Cryst. Growth 248 563
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[3] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[4] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[5] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[6] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[7] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[8] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[9] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[10] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[11] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[12] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
[13] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[14] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[15] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
No Suggested Reading articles found!