Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 077301    DOI: 10.1088/1674-1056/23/7/077301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Lattice structures and electronic properties of CIGS/CdS interface:First-principles calculations

Tang Fu-Linga b, Liu Rana b, Xue Hong-Taoa, Lu Wen-Jianga, Feng Yu-Dongb, Rui Zhi-Yuana, Huang Minc
a State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Department of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
b Science and Technology on Surface Engineering Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China;
c State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  Using first-principles calculations within density functional theory, we study the atomic structures and electronic properties of the perfect and defective (2VCu+InCu) CuInGaSe2/CdS interfaces theoretically, especially the interface states. We find that the local lattice structure of (2VCu+InCu) interface is somewhat disorganized. By analyzing the local density of states projected on several atomic layers of the two interfaces models, we find that for the (2VCu+InCu) interface the interface states near the Fermi level in CuInGaSe2 and CdS band gap regions are mainly composed of interfacial Se-4p, Cu-3d and S-3p orbitals, while for the perfect interface there are no clear interface states in the CuInGaSe2 region but only some interface states which are mainly composed of S-3p orbitals in the valance band of CdS region.
Keywords:  first-principles calculation      CuInGaSe2/CdS      density of states      interface states  
Received:  02 December 2013      Revised:  31 December 2013      Published:  15 July 2014
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  02.60.Cb (Numerical simulation; solution of equations)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11364025 and 11164014) and the Gansu Science and Technology Pillar Program, China (Grant No. 1204GKCA057).
Corresponding Authors:  Tang Fu-Ling     E-mail:  tfl03@mails.tsinghua.edu.cn
About author:  73.20.-r; 02.60.Cb; 73.20.At

Cite this article: 

Tang Fu-Ling, Liu Ran, Xue Hong-Tao, Lu Wen-Jiang, Feng Yu-Dong, Rui Zhi-Yuan, Huang Min Lattice structures and electronic properties of CIGS/CdS interface:First-principles calculations 2014 Chin. Phys. B 23 077301

[1] Turcu M and Rau U 2003 J. Phys. Chem. Solids 64 1591
[2] Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W and Powalla M 2011 Prog. Photovoltaics Res. Appl. 19 894
[3] Shi S Q, Tanaka S and Kohyama M 2006 Model. Simul. Mater. Sc. 14 S21
[4] Shi S Q, Tanaka S and Kohyama M 2007 Phys. Rev. B 76 075431
[5] Wang W C, Xiong K, Lee G, Min H, Wallace R M and Cho K 2010 Appl. Surf. Sci. 256 6569
[6] Lu H, Shen D H, Xue Q K, Polak M and Froumin N 2001 Chin. Phys. Lett. 18 94
[7] Lei H, Liu C H, Lin B X and Fu Z X 2005 Chin. Phys. Lett. 22 185
[8] Li M, Zhang J Y, Zhang Y and Wang T M 2012 Chin. Phys. B 21 067302
[9] Cojocaru-Miredin O, Choi P, Wuerz R and Raabe D 2011 Appl. Phys. Lett. 98 103504
[10] Cojocaru-Mirédin O, Choi P, Wuerz R and Raabe D 2012 Appl. Phys. Lett. 101 181605
[11] Liao D and Rockett A 2003 J. Appl. Phys. 93 9380
[12] Bao W and Ichimura M 2012 Int. J. Photoenergy 2012 619812
[13] Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T and Kitagawa M 2001 Sol. Energ. Mater. Sol. C 67 83
[14] Hinuma Y, Oba F, Kumagai Y and Tanaka I 2013 Phys. Rev. B 88 035305
[15] Tang Y H, Zhang H, Cui L X, Ouyang C Y, Shi S Q, Tang W H, Li H, Lee J-S and Chen L Q 2010 Phys. Rev. B 82 125104
[16] Shi S Q, Tanaka S and Kohyama M 2006 Mater. Trans. 47 2696
[17] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[18] Shi S Q, Tanaka S and Kohyama M 2007 J. Am. Ceram. Soc 90 2429
[19] Heyd J, Scuseria G and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[20] Wan F C, Tang F L, Zhu Z X, Xue H T, Lua W J, Feng Y D and Rui Z Y 2013 Mater. Sci. Semicon. Process. 16 1422
[21] Zhu Z X, Tang F L, Lu W J, Feng Y D, Wang Z M and Wang Y 2012 Physica B 407 4814
[22] Wang W H, Zhao G Z and Liang X X 2013 Chin. Phys. B 22 120205
[23] Wu H P, Deng K M, Tan W S, Xiao C Y, Hu F L and Li Q X 2009 Chin. Phys. B 18 5008
[24] Liechtenstein A, Anisimov V and Zaanen J 1995 Phys. Rev. B 52 R5467
[25] Lany S and Zunger A 2005 Phys. Rev. B 72 035215
[26] Vidal J, Botti S, Olsson P, Guillemoles J F and Reining L 2010 Phys. Rev. Lett. 104 056401
[27] Szabová L, Camellone M F, Huang M, Matolín V and Fabris S 2010 J. Chem. Phys. 133 234705
[28] Müller J, Nowoczin J and Schmitt H 2006 Thin Solid Films 496 364
[29] Chen D S, Yang J, Xu F, Zhou P H, Du H W, Shi J W, Yu Z S, Zhang Y H, Bartholomeus B and Ma Z Q 2013 Chin. Phys. B 22 018801
[30] Lazewski J, Neumann H, Parlinski K, Lippold G and Stanbery B 2003 Phys. Rev. B 68 144108
[31] Parkes J, Tomlinson R and Hampshire M 1973 J. Appl. Crystallogr. 6 414
[32] Spiess H W, Haeberlen U, Brandt G, Räuber A and Schneider J 1974 Phys. Status Solidi B 62 183
[33] Knight K 1992 Mater. Res. Bull. 27 161
[34] Lin Y M, Ji Z H and Zeng X H 2008 Journal of Yangzhou University 11 32 (in Chinese)
[35] Jiang F and Feng J 2006 Appl. Phys. Lett. 89 221920
[36] Belhadj M, Tadjer A, Abbar B, Bousahla Z, Bouhafs B and Aourag H 2004 Phys. Status Solidi B 241 2516
[37] Ni L H, Liu Y and Song C L 2008 Rare Metal Mater. Eng. 37 623 (in Chinese)
[38] Ekuma E C, Bagayoko D, Zhao G L, Franklin L and Wang J T 2010 AJP 3 119
[39] Pardo-Yissar V, Katz E, Wasserman J and Willner I 2003 J. Am. Chem. Soc. 125 622
[40] Rodríguez J A, Quiroga L, Camacho A and Baquero R 1996 Braz. J. Phys. 26 274
[41] Rodríguez J A, Quiroga L, Camacho A and Baquero R 1999 Phys. Rev. B 59 1555
[42] Siebentritt S, Papathanasiou N, Albert J and Lux-Steiner M C 2006 Appl. Phys. Lett. 88 151919
[43] Zhou Z, Zhao K, Wang Y M and Huang F Q 2011 J. Inorg. Mater. 26 113
[44] Rockett A 2012 Prog. Photovoltaics Res. Appl. 20 575
[45] Hinuma Y, Oba F, Kumagai Y and Tanaka I 2012 Phys. Rev. B 86 245433
[46] Gloeckler M and Sites J 2005 J. Phys. Chem. Solids 66 1891
[47] Birkmire R W 2001 Sol. Energ. Mater. Sol. C 65 17
[48] Shafarman W N, Klenk R and McCandless B E 1996 J. Appl. Phys. 79 7324
[49] Repins I, Contreras M A, Egaas B, DeHart C, Scharf J, Perkins C L, To B and Noufi R 2008 Prog. Photovoltaics Res. Appl. 16 235
[50] Oikkonen L, Ganchenkova M G, Seitsonen A P and Nieminen R 2011 J. Phys.: Condens. Matter 23 422202
[51] Domain C, Laribi S, Taunier S and Guillemoles J 2003 J. Phys. Chem. Solids 64 1657
[52] Wen L S 1991 The Physical Foundation of the Solid Material Interface (1st edn.) (Beijing: Science Press) p. 128 (in Chinese)
[1] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[2] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[3] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[4] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[5] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[6] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[7] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[8] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[9] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[10] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[11] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[12] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[13] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[14] Experimental evaluation of interface states during time-dependent dielectric breakdown of GaN-based MIS-HEMTs with LPCVD-SiNx gate dielectric
Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Tao-Tao Que(阙陶陶), Qiu-Ling Qiu(丘秋凌), Liang He(何亮), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(6): 067203.
[15] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
No Suggested Reading articles found!