Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 057504    DOI: 10.1088/1674-1056/23/5/057504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A new aluminum iron oxide Schottky photodiode designed via sol-gel coating method

A. Tataroğlua, A. A. Hendib, R. H. Alorainyb, F. Yakuphanoğluc
a Department of Physics, Faculty of Science, Gazi University, Ankara, Turkey;
b Physics Department, Sciences Faculty for Girls, King Abdulaziz University, Jeddah, Saudi Arabia;
c Department of Physics, Faculty of Science, Firat University, Elaziğ, Turkey
Abstract  A novel aluminum iron oxide (Al/AlFe2O4/p-Si) Schottky photodiode was successfully fabricated via the sol-gel coating process. The microstructure of the spinel ferrite (AlFe2O4) was examined by atomic force microscopy. The current-voltage characteristics of the fabricated photodiode were studied under dark and different illumination conditions at room temperature. By using the thermionic emission theory, the forward bias I-V characteristics of the photodiode are analyzed to determine the main electrical parameters such as the ideality factor (n) and barrier height (ΦB0) of the photodiode. The values of n and ΦB0 for all conditions are found to be about 7.00 and 0.76 eV, respectively. In addition, the values of series resistance (Rs) are determined using Cheung's method and Ohm's law. The values of Rs and shunt resistance (Rsh) are decreased with the increase of illumination intensity. These new spinel ferrites will open a new avenue to other spinel structure materials for optoelectronic devices in the near future.
Keywords:  spinel ferrite      Schottky photodiode      I-V characteristics      barrier height  
Received:  11 July 2013      Revised:  20 November 2013      Accepted manuscript online: 
PACS:  75.50.Gg (Ferrimagnetics)  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
Corresponding Authors:  A. Tataroğlu     E-mail:  ademt@gazi.edu.tr
About author:  75.50.Gg; 85.60.Dw; 84.37.+q; 73.30.+y

Cite this article: 

A. Tataroğlu, A. A. Hendi, R. H. Alorainy, F. Yakuphanoğlu A new aluminum iron oxide Schottky photodiode designed via sol-gel coating method 2014 Chin. Phys. B 23 057504

[1] Adurodija F O, Semple L and Bruning R 2005 Thin Solid Films 492 153
[2] Chen H Y and Wu J H 2012 Appl. Surf. Sci. 258 4844
[3] Minami T 2005 Semicond. Sci. Technol. 20 S35
[4] Bhosale C H, Kambale A V, Kokate A V and Rajpure K Y 2005 Mater. Sci. Eng. B 122 67
[5] Champness C H and Xu Z 1998 Appl. Surf. Sci. 123-124 485
[6] Stadler A 2012 Materials 5 661
[7] Cruz J S, Delgado G T, Perez R C, Romero C I Z and Angel O Z 2007 Thin Solid Films 515 5381
[8] Bian J M, Li X M, Gao X D, Yu W D and Chen L D 2004 Appl. Phys. Lett. 84 541
[9] Subramanyam T K, Uthanna S and Naidu B S 1998 Mater. Lett. 35 214
[10] Gupta R K, Cavas M and Yakuphanoğlu F 2012 Spectrochimica Acta Part A 95 107
[11] Lind C, Gates S D, Pedoussaut N M and Baiz T I 2010 Materials 3 2567
[12] Ellmer K 2001 J. Phys. D: Appl. Phys. 34 3097
[13] Sileo E E, Rodenas L G, Paiva-Santos C O, Stephens P W, Morando P J and Blesa M A 2006 J. Solid State Chem. 179 2237
[14] Valenzuela R 1994 Magnetic Ceramics (Cambridge: Cambridge University Press)
[15] Soylu M, Al-Ghamdi A A and Yakuphanoğlu F 2012 Microelectronic Eng. 99 50
[16] Akkal B, Benemara Z, Bachir Bouiadjra N, Tizi S and Gruzza B 2006 Appl. Surf. Sci. 253 1065
[17] Osvald J 2006 Solid State Electron. 50 228
[18] Pür F Z and Tataroğlu A 2012 Phys. Scr. 86 035802
[19] Demirezen S, Altindal Ş and Uslu İ 2013 Current Appl. Phys. 13 53
[20] Rhoderick E H and Williams R H 1988 Metal-Semiconductor Contacts (2nd edn.) (Oxford: Clarendon Press)
[21] Sze S M 1981 Physics of Semiconductor Devices (2nd edn.) (New York: John Wiley & Sons)
[22] Wang S G, Zhang Y, Zhang Y M and Zhang Y M 2010 Chin. Phys. B 19 017203
[23] Chand S and Bala S 2005 Semicond. Sci. Technol. 20 1143
[24] Tataroğlu A 2013 Chin. Phys. B 22 068402
[25] Chand S 2004 Semicond. Sci. Technol. 19 82
[26] Mamor M 2009 J. Phys. Condens. Matter 21 335802
[27] Gupta R K, Al-Ghamdi A A, Al-Hartomi O, Hasar H, El-Tantawy F and Yakuphanoğlu F 2012 Synth. Met. 162 981
[28] Reddy V R, Reddy M S P, Lakshmi B P and Kumar AA 2011 J. Alloys Compd. 509 8001
[29] Yakuphanoğlu F and Senkal B F 2009 Synthetic Metals 159 311
[30] Kazim S, Alia V, Zulfequar M, Haq M M and Husain M 2007 Physica B 393 310
[31] Uslu H, Altindal Ş, Polat İ, Bayrak and Bacaksiz E 2010 J. Alloys Compd. 509 5555
[32] Farag A A M, Ashery A, Ahmed E M A and Salem M A 2010 J. Alloys Compd. 495 116
[33] Ocak Y S, Kulakçi M, Kiliçoğlu T, Turan R and Akkiliç K 2009 Synth. Met. 159 1603
[34] Taşçioğlu İ, Aydemir U and Altindal Ş 2010 J. Appl. Phys. 108 064506
[35] Phan D T, Gupta R K, Chung G S, Al-Ghamdi A A, Al-Hartomy O, El-Tantawy F and Yakuphanoğlu F 2012 Solar Energy 86 2961
[36] Cheung S K and Cheung N W 1986 Appl. Phys. Lett. 49 85
[37] Gupta R K and Yakuphanoğlu F 2012 Solar Energy 86 1539
[38] Aldemir D A, Esen M, Kökçe A, Karataş Ş and Özdemir A F 2011 Thin Solid Films 519 6004
[39] Tataroğlu A, Altindal S and Bülbül M M 2006 Nucl. Instr. and Meth. A 568 863
[40] Sochacki M, Kolendo A, Szmidt J and Werbowy A 2005 Solid State Electron. 49 585
[41] Karataş Ş and Altindal Ş 2005 Mater. Sci. Eng. B 122 133
[42] Donoval D, Barus M and Zdimal M 1991 Solid State Electron. 34 1365
[43] Karimov K S, Ahmed M M, Moiz S A and Federov M I 2005 Sol. Energy Mater. Sol. Cells 87 61
[44] Mansoura Sh A and Yakuphanoğlu F 2012 Solid State Sci. 14 121
[45] Janardham V, Lee H K, Shim K H, Hong H B, Lee S H, Ahn K S and Choi C J 2010 J. Alloys Compd. 504 146
[1] Self-powered solar-blind photodiodes based on EFG-grown (100)-dominant β-Ga2O3 substrate
Xu-Long Chu(褚旭龙), Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Yuan-Yuan Liu(刘媛媛), Shao-Hui Zhang(张少辉), Chao Wu(吴超), Ang Gao(高昂), Pei-Gang Li(李培刚), Dao-You Guo(郭道友), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(1): 017302.
[2] Temperature-dependent barrier height inhomogeneities in PTB7:PC71BM-based organic solar cells
Brahim Ait Ali, Reda Moubah, Abdelkader Boulezhar, Hassan Lassri. Chin. Phys. B, 2020, 29(9): 098801.
[3] Influence of deep defects on electrical properties of Ni/4H-SiC Schottky diode
Jin-Lan Li(李金岚), Yun Li(李赟), Ling Wang(汪玲), Yue Xu(徐跃), Feng Yan(闫锋), Ping Han(韩平), Xiao-Li Ji(纪小丽). Chin. Phys. B, 2019, 28(2): 027303.
[4] Hysteresis effect in current-voltage characteristics of Ni/n-type 4H-SiC Schottky structure
Hao Yuan(袁昊), Qing-Wen Song(宋庆文), Chao Han(韩超), Xiao-Yan Tang(汤晓燕), Xiao-Ning He(何晓宁), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门). Chin. Phys. B, 2019, 28(11): 117303.
[5] Intrinsic charge transport behaviors in graphene-black phosphorus van der Waals heterojunction devices
Guo-Cai Wang(王国才), Liang-Mei Wu(吴良妹), Jia-Hao Yan(严佳浩), Zhang Zhou(周璋), Rui-Song Ma(马瑞松), Hai-Fang Yang(杨海方), Jun-Jie Li(李俊杰), Chang-Zhi Gu(顾长志), Li-Hong Bao(鲍丽宏), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 077303.
[6] Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5-xMgxFe2O4 nanoparticle ferrites
R M Rosnan, Z Othaman, R Hussin, Ali A Ati, Alireza Samavati, Shadab Dabagh, Samad Zare. Chin. Phys. B, 2016, 25(4): 047501.
[7] Effect of graphene tunnel barrier on Schottky barrier height of Heusler alloy Co2MnSi/graphene/n-Ge junction
Gui-fang Li(李桂芳), Jing Hu(胡晶), Hui Lv(吕辉), Zhijun Cui(崔智军), Xiaowei Hou(候晓伟), Shibin Liu(刘诗斌), Yongqian Du(杜永乾). Chin. Phys. B, 2016, 25(2): 027304.
[8] Modulation of WNx/Ge Schottky barrier height by varying N composition of tungsten nitride
Wei Jiang-Bin, Chi Xiao-Wei, Lu Chao, Wang Chen, Lin Guang-Yang, Wu Huan-Da, Huang Wei, Li Cheng, Chen Song-Yan, Liu Chun-Li. Chin. Phys. B, 2015, 24(7): 077306.
[9] Comparison of electrical characteristic between AlN/GaN and AlGaN/GaN heterostructure Schottky diodes
Lü Yuan-Jie, Feng Zhi-Hong, Lin Zhao-Jun, Gu Guo-Dong, Dun Shao-Bo, Yin Jia-Yun, Han Ting-Ting, Cai Shu-Jun. Chin. Phys. B, 2014, 23(2): 027101.
[10] F4-TCNQ concentration dependence of the current–voltage characteristics in the Au/P3HT:PCBM:F4-TCNQ/n-Si (MPS) Schottky barrier diode
E. Yağlıoğlu, Ö. Tüzün Özmen. Chin. Phys. B, 2014, 23(11): 117306.
[11] Analysis of optoelectronic properties of TiO2 nanowiers/Si heterojunction arrays
Saeideh Ramezani Sani. Chin. Phys. B, 2014, 23(10): 107302.
[12] Cation distributions estimated using the magnetic moments of the spinel ferrites Co1-xCrxFe2O4 at 10 K
Shang Zhi-Feng, Qi Wei-Hua, Ji Deng-Hui, Xu Jing, Tang Gui-De, Zhang Xiao-Yun, Li Zhuang-Zhi, Lang Li-Li. Chin. Phys. B, 2014, 23(10): 107503.
[13] Comparative study of electrical properties of Au/n-Si (MS) and Au/Si3N4/n-Si (MIS) Schottky diodes
Adem Tataroğlu. Chin. Phys. B, 2013, 22(6): 068402.
[14] Al/Ti/4H–SiC Schottky barrier diodes with inhomogeneous barrier heights
Wang Yue-Hu, Zhang Yi-Men, Zhang Yu-Ming, Song Qing-Wen, Jia Ren-Xu. Chin. Phys. B, 2011, 20(8): 087305.
[15] Parameter analysis for gate metal–oxide–semiconductor structures of ion-implanted 4H silicon carbide metal–semiconductor field-effect transistors
Wang Shou-Guo, Zhang Yi-Men, Zhang Yu-Ming. Chin. Phys. B, 2010, 19(9): 097106.
No Suggested Reading articles found!