Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 117306    DOI: 10.1088/1674-1056/23/11/117306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

F4-TCNQ concentration dependence of the current–voltage characteristics in the Au/P3HT:PCBM:F4-TCNQ/n-Si (MPS) Schottky barrier diode

E. Yağlıoğlu, Ö. Tüzün Özmen
Department of Physics, Faculty of Arts and Sciences, Düzce University, 81620 Düzce, Turkey
Abstract  In this study, we investigate some main electrical parameters of the gold/poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester:2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane/n-type silicon (Au/P3HT:PCBM:F4-TCNQ/n-Si) metal-polymer-semiconductor (MPS) Schottky barrier diode (SBD) in terms of the effects of F4-TCNQ concentration (0%, 1%, and 2%). F4-TCNQ-doped P3HT:PCBM is fabricated to figure out the p-type doping effect on the device performance. The main electrical parameters, such as ideality factor (n), barrier height (ΦB0), series resistance (Rs), shunt resistance (Rsh), and density of interface states (Nss) are determined from the forward and reverse bias current-voltage (I-V) characteristics in the dark and at room temperature. The values of n, Rs, ΦB0, and Nss are significantly reduced by using the 1% F4-TCNQ doping in P3HT:PCBM:F4-TCNQ organic blend layer, additionally, the carrier mobility and current are increased by the soft (1%) doping. The most ideal values of electrical parameters are obtained for 1% F4-TCNQ used diode. On the other hand, the carrier mobility and current for the hard doping (2%) become far away from the ideal diode values due to the unbalanced generation of holes/electrons and doping-induced disproportion when compared with 1% F4-TCNQ doping. These results show that the electrical properties of MPS SBDs strongly depend on the F4-TCNQ doping and doping concentration of interfacial P3HT:PCBM:F4-TCNQ organic layer. Moreover, the soft F4-TCNQ doping concentration (1%) in P3HT:PCBM:F4-TCNQ organic layer significantly improves the electrical characteristics of the Au/P3HT:PCBM:F4-TCNQ/n-Si (MPS) SBDs which enables the fabricating of high-quality electronic and optoelectronic devices.
Keywords:  P3HT:PCBM:F4-TCNQ interfacial organic layer      F4-TCNQ doping concentration      Schottky barrier diodes      I-V characteristics  
Received:  30 June 2014      Revised:  25 July 2014      Accepted manuscript online: 
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  73.61.Ph (Polymers; organic compounds)  
  81.05.Fb (Organic semiconductors)  
  85.30.Hi (Surface barrier, boundary, and point contact devices)  
Corresponding Authors:  Ö. Tüzün Özmen     E-mail:  ozgetuzun@duzce.edu.tr

Cite this article: 

E. Yağlıoğlu, Ö. Tüzün Özmen F4-TCNQ concentration dependence of the current–voltage characteristics in the Au/P3HT:PCBM:F4-TCNQ/n-Si (MPS) Schottky barrier diode 2014 Chin. Phys. B 23 117306

[1] Zhang F, Sun B, Song T, Zhu X and Lee S 2011 Chem. Mater. 23 2084
[2] Lin Y Y, Gundlach D J, Nelson S F and Jackson T N 1997 IEEE Trans. Electron. Dev. 44 1325
[3] Unni K N N, Pandey A K, Alem A and Nunzi J M 2006 Chem. Phys. Lett. 421 554
[4] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L and Holmes A B 1990 Nature 347 539
[5] Kumar P, Jain S C, Misra A, Kamalasanan M N and Kumar V 2006 J. Appl. Phys. 100 114506
[6] Wu H R, Song Q L, Wang M L, Li F Y, Yang H, Wu Y, Huang C H, Ding X M and Hou X Y 2007 Thin Solid Films 515 8050
[7] Narayan K S, Manoj A G, Singh T B and Alagiriswamy A A 2002 Thin Solid Films 417 75
[8] Pecchia A and Di Carlo A 2004 Rep. Prog. Phys. 67 1497
[9] Onganer Y, Sağlam M, Türüt A, Efeoğlu H and Tüzemen S 1996 Solid State Electron. 39 677
[10] Yu G, Gao J, Hummelen J C, Wudi F and Heeger A J 1995 Science 270 1789
[11] Schilinsky P, Waldauf C and Brabec C J 2002 Appl. Phys. Lett. 81 3885
[12] Song T, Lee S T and Sun B 2012 J. Mater. Chem. 22 4216
[13] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M and Heeger A J 2007 Science 317 222
[14] Burkhard G F, Hoke E T, Scully S R and McGehee M D 2009 Nano Lett. 9 4037
[15] Liang M A 2010 Chin. Phys. Lett. 27 117301
[16] Chan C K, Zhao W, Kahn A and Hill I G 2009 Appl. Phys. Lett. 94 203306
[17] Zhang Y and Blom P W M 2010 Appl. Phys. Lett. 97 083303
[18] Harada K, Riede M, Leo K and Hild O R 2008 Phys. Rev. B 77 195212
[19] Han X, Wu Z and Sun B 2013 Org. Electron. 14 1116
[20] Aziz E F, Vollmer A, Eisebitt S, Eberhardt W, Pingel P, Neher D and Koch N 2007 Adv. Mater. 19 3257
[21] Lei X, Zhang F, Song T and Sun B 2011 Appl. Phys. Lett. 99 233305
[22] Drees M, Premaratne K, Graupner W, Heflin J R, Davis R M, Marciu D and Miller M 2002 Appl. Phys. Lett. 81 4607
[23] Zhang Y and Blom P W M 2010 Org. Electron. 11 1261
[24] Reinhardt K and Kern W 2008 Handbook of Silicon Wafer Cleaning Technology (2nd edn.) (New York: William Andrew Publishing)
[25] Sze S M 1981 Physics of Semiconductor Devices (2nd edn.) (New York: Wiley)
[26] Rhoderick E H and Williams R H 1988 Metal-Semiconductor Contacts (Oxford: Clarendon Press)
[27] Gökçen M, Tunç T, Altındal Ş and Uslu İ 2012 Curr. Appl. Phys. 12 525
[28] Kampen T U, Park S and Zahn D R T 2002 Appl. Surf. Sci. 190 461
[29] Braun D and Heeger A J 1991 Appl. Phys. Lett. 58 1982
[30] Fang Y, Chen S A and Chu M L 1992 Synth. Met. 52 261
[31] Card H C and Rhoderick E H 1971 J. Phys. D 4 1589
[32] Tabbert B and Goushcha A 2012 Optical Detectors, in: Springer Handbook of Lasers and Optics, Ed. Träger F (Berlin, Heidelberg, New York: Springer-Verlag) pp. 503-562
[33] Leeuw D M and Lous E J 1994 Synth. Met. 65 45
[34] Yakuphanoglu F, Shah M and Farooq W A 2011 Acta Phys. Pol. A 120 558
[35] Abkowitz M, Facci J S and Rehm J 1998 J. Appl. Phys. 83 2670
[36] Chiu F C 2014 Adv. Mater. Sci. Eng. 2014 578168
[37] John J, Sivaraman S, Jayalekshmy S and Anantharaman M R 2010 J. Phys. Chem. Solid 71 935
[38] Yakuphanoglu F 2007 Synth. Met. 157 859
[39] Gundlach D J, Pernstich K P, Wilckens G, Gruter M, Haas S and Batlogg B 2005 J. Appl. Phys. 98 064502
[40] Cheung S K and Cheung N W 1986 Appl. Phys. Lett. 49 85
[41] Padma R and Reddy V R 2014 Adv. Mater. Lett. 5 31
[42] Norde H 1979 J. Appl. Phys. 50 5052
[43] Prokopyev A I and Mesheryakov S A 2003 Measurement 33 135
[44] Reddy M S P, Kwon M K, Kang H S, Kim D S, Lee J H, Reddy V R and Jang J S 2013 J. Semicond. Sci. Tech. 13 492
[45] Demirezen S, Sönmez Z, Aydemir U and Altındal Ş 2012 Curr. Appl. Phys. 12 266
[1] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[2] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[3] Review of gallium oxide based field-effect transistors and Schottky barrier diodes
Zeng Liu(刘增), Pei-Gang Li(李培刚), Yu-Song Zhi(支钰崧), Xiao-Long Wang(王小龙), Xu-Long Chu(褚旭龙), Wei-Hua Tang(唐为华). Chin. Phys. B, 2019, 28(1): 017105.
[4] Influence of dry-etching damage on the electrical properties of an AlGaN/GaN Schottky barrier diode with recessed anode
Zhong Jian (钟健), Yao Yao (姚尧), Zheng Yue (郑越), Yang Fan (杨帆), Ni Yi-Qiang (倪毅强), He Zhi-Yuan (贺致远), Shen Zhen (沈震), Zhou Gui-Lin (周桂林), Zhou De-Qiu (周德秋), Wu Zhi-Sheng (吴志盛), Zhang Bai-Jun (张伯君), Liu Yang (刘扬). Chin. Phys. B, 2015, 24(9): 097303.
[5] Breakdown characteristics of AlGaN/GaN Schottky barrier diodes fabricated on a silicon substrate
Jiang Chao (蒋超), Lu Hai (陆海), Chen Dun-Jun (陈敦军), Ren Fang-Fang (任芳芳), Zhang Rong (张荣), Zheng You-Dou (郑有炓). Chin. Phys. B, 2014, 23(9): 097308.
[6] A new aluminum iron oxide Schottky photodiode designed via sol-gel coating method
A. Tataroğlu, A. A. Hendi, R. H. Alorainy, F. Yakuphanoğlu. Chin. Phys. B, 2014, 23(5): 057504.
[7] Analysis of optoelectronic properties of TiO2 nanowiers/Si heterojunction arrays
Saeideh Ramezani Sani. Chin. Phys. B, 2014, 23(10): 107302.
[8] Determination of the series resistance under the Schottky contacts of AlGaN/AlN/GaN Schottky barrier diodes
Cao Zhi-Fang(曹芝芳), Lin Zhao-Jun(林兆军), LŰ Yuan-Jie(吕元杰), Luan Chong-Biao(栾崇彪), Yu Ying-Xia(于英霞), Chen Hong(陈弘), and Wang Zhan-Guo(王占国) . Chin. Phys. B, 2012, 21(1): 017103.
[9] Effect of diode size and series resistance on barrier height and ideality factor in nearly ideal Au/n type-GaAs micro Schottky contact diodes
M. A. Yeganeh,Sh. Rahmatallahpur, A. Nozad, and R. K. Mamedov. Chin. Phys. B, 2010, 19(10): 107207.
[10] Characterization of ion-implanted 4H-SiC Schottky barrier diodes
Wang Shou-Guo(王守国), Zhang Yan(张岩), Zhang Yi-Men(张义门), and Zhang Yu-Ming(张玉明) . Chin. Phys. B, 2010, 19(1): 017203.
[11] Enhanced piezoresistivity in Ni--silicone rubber composites
Chang Fang-Gao(常方高), Yang Feng(杨枫), Wang Shao-Xiang(王少祥), Zhang Na(张娜), and Song Gui-Lin(宋桂林). Chin. Phys. B, 2009, 18(2): 652-657.
[12] Fabrication and characteristics of lateral Ti/4H-SiC Schottky barrier diodes
Wang Shou-Guo (王守国), Yang Lin-An (杨林安), Zhang Yi-Men (张义门), Zhang Yu-Ming (张玉明), Zhang Zhi-Yong (张志勇), Yan Jun-Feng (闫军锋). Chin. Phys. B, 2003, 12(3): 322-324.
No Suggested Reading articles found!